scholarly journals Multi-modal Data Fusion for Land-subsidence Image Improvement in PSInSAR Analysis

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Kodai Shimosato ◽  
Norimichi Ukita
2009 ◽  
pp. 213-237 ◽  
Author(s):  
Alessio Dore ◽  
Matteo Pinasco ◽  
Carlo S. Regazzoni
Keyword(s):  

2001 ◽  
Vol 22 (6) ◽  
pp. 921-932 ◽  
Author(s):  
A. Prakash ◽  
E. J. Fielding ◽  
R. Gens ◽  
J. L. Van Genderen ◽  
D. L. Evans

2012 ◽  
Vol 12 (06) ◽  
pp. 1250052 ◽  
Author(s):  
YUEQUAN BAO ◽  
YONG XIA ◽  
HUI LI ◽  
YOU-LIN XU ◽  
PENG ZHANG

A huge number of data can be obtained continuously from a number of sensors in long-term structural health monitoring (SHM). Different sets of data measured at different times may lead to inconsistent monitoring results. In addition, structural responses vary with the changing environmental conditions, particularly temperature. The variation in structural responses caused by temperature changes may mask the variation caused by structural damages. Integration and interpretation of various types of data are critical to the effective use of SHM systems for structural condition assessment and damage detection. A data fusion-based damage detection approach under varying temperature conditions is presented. The Bayesian-based damage detection technique, in which both temperature and structural parameters are the variables of the modal properties (frequencies and mode shapes), is developed. Accordingly, the probability density functions of the modal data are derived for damage detection. The damage detection results from each set of modal data and temperature data may be inconsistent because of uncertainties. The Dempster–Shafer (D–S) evidence theory is then employed to integrate the individual damage detection results from the different data sets at different times to obtain a consistent decision. An experiment on a two-story portal frame is conducted to demonstrate the effectiveness of the proposed method, with consideration on model uncertainty, measurement noise, and temperature effect. The damage detection results obtained by combining the damage basic probability assignments from each set of test data are more accurate than those obtained from each test data separately. Eliminating the temperature effect on the vibration properties can improve the damage detection accuracy. In particular, the proposed technique can detect even the slightest damage that is not detected by common damage detection methods in which the temperature effect is not eliminated.


Author(s):  
Peter Zulch ◽  
Marcello Distasio ◽  
Todd Cushman ◽  
Brian Wilson ◽  
Ben Hart ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ziwen Zhang ◽  
Xuelian Wang ◽  
Yongdong Wu ◽  
Zengpeng Zhao ◽  
Yang E

With the enrichment of land subsidence monitoring means, data fusion of multisource land subsidence data has gradually become a research hotspot. The Interferometry Synthetic Aperture Radar (InSAR) is a potential Earth observation approach, and it has been verified to have a variety of applications in measuring ground movement, urban subsidence, and landslides but similar to Global Positioning System (GPS). The InSAR observation accuracy and measurements are affected by the tropospheric delay error as well as by the Earth’s ionospheric and tropospheric layers. In order to rectify the InSAR result, there is a need to interpolate the GPS-derived tropospheric delay. Keeping in view of the above, this research study has presented an improved Inverse Distance Weighting (IIDW) interpolation method based on Inverse Distance Weighting (IDW) interpolation by using Sentinel-1 radar satellite image provided by European Space Agency (ESA) and the measured data from the Continuously Operating Reference Stations (CORS) provided by the Survey and Mapping Office of the Lands Department of Hong Kong. Furthermore, the corrected differential tropospheric delay correction is used to correct the InSAR image. The experimental results show that the correction of tropospheric delay by IIDW interpolation not only improves the accuracy of Differential Interferometry Synthetic Aperture Radar (D-InSAR) but also provides a new idea for the solution of InSAR and GPS data fusion.


Sign in / Sign up

Export Citation Format

Share Document