scholarly journals Real-Valued Spreading Sequences for PSSS Based High-Speed Wireless Systems

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
L. Lopacinski ◽  
N. Maletic ◽  
G. Panic ◽  
A. Hasani ◽  
J. Gutierrez ◽  
...  
Author(s):  
Muhammad Bello Abdullahi

Orthogonal Frequency Division Multiplexing (OFDM) is used to achieve multi-carrier signals and high- Speed data rate in free space. OFDM-based systems operate in the hostile multipath radio environment, which allows efficient sharing of limited resources. This research work was designed, developed and simulated an OFDM System using the basic blocks of Simulink in MATLAB/Simulink software, to support multi-carrier, high-speed data rates. This was achieved in backing of collection and review of high-quality research papers, which reported the latest research developments in OFDM communications networks, and its applications in future wireless systems. The research work significantly increases the speed of data rate signals, and many critical problems associated with the applications of OFDM technologies in future wireless systems are still looking for efficient solutions. This would overcome the global issues and challenges facing the limited bandwidth in wireless communication network.


2015 ◽  
Vol 18 (3) ◽  
pp. 218-224
Author(s):  
Khoa Le Dang ◽  
Phuong Huu Nguyen ◽  
Hiroshi Ochi

Optical wireless systems have attracted attention, because they allow high-speed transmission without electromagnetic interference. Orthogonal frequency division multiplexing (OFDM) can send multiple high speed signals by using orthogonal carrier frequencies. Recently, studies have been focused on the optimal OFDM technique for optical wireless systems. When using OFDM, one important issue is determining the cyclic prefix and removing it from the frame before the receiver detects signals. In this paper, we propose a new auto synchronization technique of unipolar MPAM signals. It can remove the cyclic prefix in any sample of the OFDM frame using unipolar MPAM. It is a candidate for wideband systems and using 2-PAM or 4-PAM. The results of mathematical analysis and simulations show that it can be used for optical wireless systems.


2019 ◽  
Vol 37 (12) ◽  
pp. 2873-2882 ◽  
Author(s):  
KwangOk Kim ◽  
Kyeong-Hwan Doo ◽  
Han Hyub Lee ◽  
SeungHwan Kim ◽  
Heuk Park ◽  
...  

Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Rafal Przesmycki ◽  
Marek Bugaj ◽  
Leszek Nowosielski

Communication systems have been driven towards the fifth generation (5G) due to the demands of compact, high speed, and large bandwidth systems. These types of radio communication systems require new and more efficient antenna designs. This article presents a new design solution of a broadband microstrip antenna intended for use in 5G systems. The proposed antenna has a central operating frequency of 28 GHz and can be used in the LMDS (local multipoint distribution service) frequency band. The dimensions of the antenna and its parameters have been calculated, simulated, and optimized using the FEKO software. The antenna has a compact structure with dimensions (6.2 × 8.4 × 1.57) mm. Rogers RT Duroid 5880 material was used as a substrate for the antenna construction, which has a dielectric coefficient of 2.2 and a thickness of 1.57 mm. The antenna described in the article is characterized by a low reflection coefficient of −22.51 dB, a high energy gain value of 3.6 dBi, a wide operating band of 5.57 GHz (19.89%), and high energy efficiency.


Author(s):  
T. Satoh ◽  
T. Shimura ◽  
S. Ichikawa ◽  
A. Betti-Berutto ◽  
C. Poledrelli ◽  
...  
Keyword(s):  

Author(s):  
Rakesh Kumar Bhardwaj ◽  
H. S. Sudhamani ◽  
V. P. Dutta ◽  
Naresh Bhatnagar

AbstractThe demand of high-speed wireless communication has increased, which need the data rate to be in the order of Terabyte per second (Tbps) in the near future. Terahertz (THz) band communication is a key wireless communication technology to satisfy this future demand. This would also reduce the spectrum scarcity and capacity limitation of current wireless systems. Microfabricated Folded Waveguide TWTs are the potential compact sources of wide band and high-power terahertz radiation. This study primarily focuses on machining technology for THz waveguide components requiring ultra-high precision micromachining. Rectangular waveguides, especially Folded Waveguides (FW), are even more difficult to manufacture using conventional machining techniques due to their small size and very tight tolerances. The criticalities in micromachining of FW for 0.22 THz have been addressed in this article. Half hard free cutting Brass IS 319-H2 was used as a work material due to its electrical and mechanical properties. Waveguide size of 0.852 × 0.12 mm was machined within ± 3–5 μm linear tolerances, surface roughness in the order of 45 nm Ra, and flatness less than half of wavelength (< λ/2). The split top and bottom blocks of the folded waveguide were aligned by dowel pins which matched within a tolerance of ± 5 μm. The perpendicularity and parallelism were maintained within 5 μm tolerance. This work explored and established the application of micromilling as reasonably suitable for the THz waveguides followed by ultrasonic cleaning as deburring. It also investigated the measured folded waveguide losses which were close to simulated values.


Sign in / Sign up

Export Citation Format

Share Document