Soliton Solutions: Discrete Dynamical Analysis of Nonlinear Vacuum Diode throughout the Discharging Capacitor

Author(s):  
Sayed Allamah Iqbal
2009 ◽  
Vol 19 (07) ◽  
pp. 2249-2266 ◽  
Author(s):  
JIBIN LI ◽  
YI ZHANG ◽  
GUANRONG CHEN

It was reported in the literature that some nonlinear wave equations have the so-called loop- and inverted-loop-soliton solutions, as well as the so-called loop-periodic solutions. Are these true mathematical solutions or just numerical artifacts? To answer the question, this article investigates all traveling wave solutions in the parameter space for three typical nonlinear wave equations from a theoretical viewpoint of dynamical systems. Dynamical analysis shows that all these loop- and inverted-loop-solutions are merely visual illusion of numerical artifacts. To reveal the nature of such special phenomena, this article also offers the mathematical parametric representations of these traveling wave solutions precisely in analytic forms.


2018 ◽  
Vol 5 (1) ◽  
pp. 31-36
Author(s):  
Md Monirul Islam ◽  
Muztuba Ahbab ◽  
Md Robiul Islam ◽  
Md Humayun Kabir

For many solitary wave applications, various approximate models have been proposed. Certainly, the most famous solitary wave equations are the K-dV, BBM and Boussinesq equations. The K-dV equation was originally derived to describe shallow water waves in a rectangular channel. Surprisingly, the equation also models ion-acoustic waves and magneto-hydrodynamic waves in plasmas, waves in elastic rods, equatorial planetary waves, acoustic waves on a crystal lattice, and more. If we describe all of the above situation, we must be needed a solution function of their governing equations. The Tan-cot method is applied to obtain exact travelling wave solutions to the generalized Korteweg-de Vries (gK-dV) equation and generalized Benjamin-Bona- Mahony (BBM) equation which are important equations to evaluate wide variety of physical applications. In this paper we described the soliton behavior of gK-dV and BBM equations by analytical system especially using Tan-cot method and shown in graphically. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 5(1), Dec 2018 P 31-36


Author(s):  
Luciano Carotenuto ◽  
Vincenza Pace ◽  
Dina Bellizzi ◽  
Giovanna De Benedictis

Author(s):  
YK Wu ◽  
JL Mo ◽  
B Tang ◽  
JW Xu ◽  
B Huang ◽  
...  

In this research, the tribological and dynamical characteristics of a brake pad with multiple blocks are investigated using experimental and numerical methods. A dynamometer with a multiblock brake pad configuration on a brake disc is developed and a series of drag-type tests are conducted to study the brake squeal and wear behavior of a high-speed train brake system. Finite element analysis is performed to derive physical explanations for the observed experimental phenomena. The experimental and numerical results show that the rotational speed and braking force have important influences on the brake squeal; the trends of the multiblock and single-block systems are different. In the multiblock brake pad, the different blocks exhibit significantly different magnitudes of contact stresses and vibration accelerations. The blocks located in the inner and outer rings have higher vibration acceleration amplitudes and stronger vibration energies than the blocks located in the middle ring.


2008 ◽  
Vol 15 (4) ◽  
pp. 681-693 ◽  
Author(s):  
K. Stasiewicz ◽  
J. Ekeberg

Abstract. Dispersive properties of linear and nonlinear MHD waves, including shear, kinetic, electron inertial Alfvén, and slow and fast magnetosonic waves are analyzed using both analytical expansions and a novel technique of dispersion diagrams. The analysis is extended to explicitly include space charge effects in non-neutral plasmas. Nonlinear soliton solutions, here called alfvenons, are found to represent either convergent or divergent electric field structures with electric potentials and spatial dimensions similar to those observed by satellites in auroral regions. Similar solitary structures are postulated to be created in the solar corona, where fast alfvenons can provide acceleration of electrons to hundreds of keV during flares. Slow alfvenons driven by chromospheric convection produce positive potentials that can account for the acceleration of solar wind ions to 300–800 km/s. New results are discussed in the context of observations and other theoretical models for nonlinear Alfvén waves in space plasmas.


Sign in / Sign up

Export Citation Format

Share Document