Adaptive and multi-mode baseband systems for next generation wireless communication

Author(s):  
Farhana Sheikh ◽  
Ankit Sharma ◽  
Oskar Andersson ◽  
Mehnaz Rahman ◽  
Dongmin Yoon ◽  
...  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Parvin Kumar ◽  
Sanjay Kumar Sharma ◽  
Shelly Singla ◽  
Varun Gupta ◽  
Abhishek Sharma

Abstract In today’s scenario, wireless communication is turning into a decisive and leading backbone to access the worldwide network. Therefore, the usage of mobile phones and broadband is rising staggeringly. To satisfy their expulsive needs, it demands increment in data rates while providing higher bandwidth and utilizing optical fiber in wireless communication, and this becomes a worldwide analysis area. Radio over fiber (RoF) system is taken into account as best solution to fulfill these needs. In RoF system, the radio frequency signal operated at millimeter wave (30–300 GHz) is centralized and processed at control station (CS) and also, the CS upconverts this electrical signal to optical domain. By employing optical fiber link, this signal reaches to base station (BS). Then, the received optical signal converts back to electrical domain at the respective BS. Now BS radiates the electrical signal to corresponding mobile station (MS) in commission with the millimeter wave frequency bands. This RoF system is providing massive bandwidth, facilitating large mobility for RF frequency signals, small loss, fast and cost effective setup, wonderful security, and unlicensed spectrum etc. The RoF system introduces microcells structure for BS cells to boost the frequency reuse and needed capacity. It has benefits in terms of ability to fulfill increasing bandwidth demands to cut back the power consumption and the dimensions of the handset devices. This paper firstly explains the overview of existing wireless mobile communication and broadband systems and then, targets the review of RoF system which will become energy efficient system for next generation mobile communication and future broadband systems. This paper also includes the performance degradation and evaluation parameters. Finally, this paper presents the various research opportunities for its implementation zone.


2012 ◽  
pp. 60-76
Author(s):  
Han-Chieh Chao ◽  
Chi-Yuan Chang ◽  
Chi-Yuan Chen ◽  
Kai-Di Chang

The explosive development of Internet and wireless communication has made personal communication more convenient. People can use a handy wireless device to transfer different kinds of data such as voice data, text data, and multimedia data. Multimedia streaming, video conferencing, and on-line interactive 3D games are expected to attract an increasing number of users in the future. The bandwidth requirement would be high and the heterogeneous terminals would generally provide limited resource, such as low processing power, low battery life and limited data rate capabilities. These applications would be the major challenge for wireless networks. Although the traditional layered protocol stacks have been used for many years, they are not suitable for the next generation wireless networks and the mobile systems. Due to the time varying transmission of the wireless channel and the dynamic resource requirements of different application, the traditional layered approach to the mobile multimedia communication is full of challenges to meet the user requirement on performance and efficiency. Cross-layer design is an interesting research topic that actively exploits the dependence between different protocol layers to obtain performance gains. The authors performed a survey and introduced the cross-layer design principles and issues for different research topics, including QoS, mobility, security, application, and the next generation wireless communication.


Sign in / Sign up

Export Citation Format

Share Document