A high performance antenna measurement system

Author(s):  
F. Pasqualucci ◽  
J.B. Baprawski ◽  
J.A. Paul
2015 ◽  
Vol 27 (3) ◽  
pp. 316-327 ◽  
Author(s):  
Daniel Jurburg ◽  
Elisabeth Viles ◽  
Carmen Jaca ◽  
Martin Tanco

Purpose – Continuous improvement (CI) is regarded as a powerful approach to achieve business excellence. However, the implementation is not simple as it involves managing a considerable amount of tangible and intangible factors throughout the whole organization. The purpose of this paper is to fill the gap by presenting first-hand information about how companies really implement and organize their CI processes. Design/methodology/approach – The study was based on semi-structured interviews in ten high performing companies in the Basque Country, a region in northern Spain well known for its business quality. The objective was to analyze the state of their CI processes, putting special focus on how the organizational structure integrates with the CI processes and what are the characteristics of the corresponding measurement system. Findings – The study shows a lack of company-wide focus on CI, little written evidence of previous improvement activities, unclear improvement process owner, and poor use of adequate measurement systems to monitor CI. Practical implications – Managers should understand that is not enough to guarantee their own commitment and provide the structure, since in order to become learning organization, a different holistic approach towards the CI process must be adopted. Originality/value – While most previous work on this field have focused primarily on how to implement different techniques in order to achieve better productive performance, this study presents empirical research from a more holistic approach, assessing the characteristics affecting CI by considering strategy, structure, and the measurement system.


2005 ◽  
Vol 5 (1) ◽  
pp. 143-153 ◽  
Author(s):  
M. Mikoš ◽  
A. Vidmar ◽  
M. Brilly

Abstract. A medium-ranged high performance handheld reflectorless laser measurement system, was used for a morphological survey on the Strug rock fall in W Slovenia in the period from August 2003 to August 2004. The purpose was to evaluate its potential for monitoring ground surface changes in rock fall source areas and to help evaluating morphological changes by measuring distance from fixed points. In the area, 21 fixed geodetic points have been established. Altogether, seven measurement sets with more than 5500 points have been gathered in the rock fall area. Choosing a point cloud with a density of less than 1 point per 10m2 on a very rough rock fall surface failed to be a good solution. The changes on larger areas were shown by displacements of selected significantly large-sized rock blocks with a volume of several m3. Because only smaller changes were observed between the single field series, the rock fall surface generally remained unchanged. Local surface changes of the order of 1 m or more, were clearly shown by measurements in the selected referenced cross sections. The usage of these cross sections gave a possibility to evaluate volumetric changes on the surface. The laser measurement system provided a good replacement for the classical terrestrial geodetic survey equipment, especially when performing remote monitoring of morphological changes in rock fall hazard zones, however, the case is different when fixed points are to be measured precisely.


Author(s):  
Si Luo Si Luo ◽  
Heqiang Mu Heqiang Mu ◽  
Yanling Jia Yanling Jia ◽  
Xiaoma Shen Xiaoma Shen

Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4663 ◽  
Author(s):  
María García Fernández ◽  
Yuri Álvarez López ◽  
Fernando Las-Heras

On-site antenna measurement has been recently attracting an increasing interest in order to assess the antenna performance in real operational environments. The complexity and cost of these kind of measurements have been significantly cut down due to recent developments in unmanned aerial vehicles’ (UAVs) hardware and antenna measurement post-processing techniques. In particular, the introduction of positioning and geo-referring subsystems capable of providing centimeter-level accuracy together with the use of phase retrieval techniques and near-field to far-field transformation algorithms, have enabled near field measurements using UAVs. This contribution presents an improved UAV-based on-site antenna measurement system. On the one hand, the simultaneous acquisition on two measurement surfaces has been introduced and calibrated properly, thus reducing geo-referring uncertainties and flight time. On the other hand, the positioning and geo-referring subsystem has been enhanced by means of a dual-band real time kinematics (RTK) unit. The system capabilities were validated by measuring an offset reflector antenna, and the results were compared with the measurements at the spherical range in the anechoic chamber and with the measurements collected with a previous version of the implemented system.


Sign in / Sign up

Export Citation Format

Share Document