Situation-Aware Adaptive Recommendation to Assist Mobile Users in a Campus Environment

Author(s):  
Amel Bouzeghoub ◽  
Kien Ngoc Do ◽  
Leandro Krug Wives
NASPA Journal ◽  
2000 ◽  
Vol 37 (3) ◽  
Author(s):  
Adele Lozano Rodriguez ◽  
Florence Guido-DiBrito ◽  
Vasti Torres ◽  
Donna Talbot

A neglected yet increasing student population in higher education at the threshold of the 21st Century, Latina college and university students face distinct challenged and barriers to participation. This manuscript explores various Latina student issues - including "labeling," barriers, and factors contributing to success - and examines effective strategies for student and academic affairs administrators to support Latina success in higher education (ie, financial aid, academic support, social/cultural support, and campus environment).


Author(s):  
Maaz Sirkhot ◽  
Ekta Sirwani ◽  
Aishwarya Kourani ◽  
Akshit Batheja ◽  
Kajal Jethanand Jewani

In this technological world, smartphones can be considered as one of the most far-reaching inventions. It plays a vital role in connecting people socially. The number of mobile users using an Android based smartphone has increased rapidly since last few years resulting in organizations, cyber cell departments, government authorities feeling the need to monitor the activities on certain targeted devices in order to maintain proper functionality of their respective jobs. Also with the advent of smartphones, Android became one of the most popular and widely used Operating System. Its highlighting features are that it is user friendly, smartly designed, flexible, highly customizable and supports latest technologies like IoT. One of the features that makes it exclusive is that it is based on Linux and is Open Source for all the developers. This is the reason why our project Mackdroid is an Android based application that collects data from the remote device, stores it and displays on a PHP based web page. It is primarily a monitoring service that analyzes the contents and distributes it in various categories like Call Logs, Chats, Key logs, etc. Our project aims at developing an Android application that can be used to track, monitor, store and grab data from the device and store it on a server which can be accessed by the handler of the application.


2020 ◽  
Vol 10 (5) ◽  
pp. 1557
Author(s):  
Weijia Feng ◽  
Xiaohui Li

Ultra-dense and highly heterogeneous network (HetNet) deployments make the allocation of limited wireless resources among ubiquitous Internet of Things (IoT) devices an unprecedented challenge in 5G and beyond (B5G) networks. The interactions among mobile users and HetNets remain to be analyzed, where mobile users choose optimal networks to access and the HetNets adopt proper methods for allocating their own network resource. Existing works always need complete information among mobile users and HetNets. However, it is not practical in a realistic situation where important individual information is protected and will not be public to others. This paper proposes a distributed pricing and resource allocation scheme based on a Stackelberg game with incomplete information. The proposed model proves to be more practical by solving the problem that important information of either mobile users or HetNets is difficult to acquire during the resource allocation process. Considering the unknowability of channel gain information, the follower game among users is modeled as an incomplete information game, and channel gain is regarded as the type of each player. Given the pricing strategies of networks, users will adjust their bandwidth requesting strategies to maximize their expected utility. While based on the sub-equilibrium obtained in the follower game, networks will correspondingly update their pricing strategies to be optimal. The existence and uniqueness of Bayesian Nash equilibrium is proved. A probabilistic prediction method realizes the feasibility of the incomplete information game, and a reverse deduction method is utilized to obtain the game equilibrium. Simulation results show the superior performance of the proposed method.


Author(s):  
Austin T. Hertel ◽  
Madison M. Heeter ◽  
Olivia M. Wirfel ◽  
Mara J. Bestram ◽  
Steven A. Mauro

The COVID-19 pandemic forced most institutions of higher education to offer instruction and activities offsite, impacting millions of people. As universities consider resuming normal operations on campus, evidence-based guidance is needed to enhance safety protocols to reduce the spread of infectious disease in their campus environments. During the 2020/2021 academic year, Gannon University in Erie, PA, USA, was able to maintain most of its operations on campus. Part of Gannon’s disease mitigation strategy involved the development of a novel in-house, real-time RT-PCR-based surveillance program, which tested 23,227 samples to monitor the presence of COVID-19 on campus. Temporal trends of COVID-19 infection at Gannon were distinct from statewide data. A significant portion of this variance involved student athletes and associated staff, which identified as a higher incidence risk group compared with non-athletes. Rapid identification of athlete driven outbreaks allowed for swift action to limit the spread of COVID-19 among teammates and to the rest of the campus community. This allowed for successful completion of instruction and a modified season for all sports at Gannon. Our findings provide insights that could prove useful to the thousands of institutions seeking to resume a more traditional presence on campus.


Sign in / Sign up

Export Citation Format

Share Document