A network based virtual lab for motion control applications

Author(s):  
O. Mirabella ◽  
M. Brischetto ◽  
A. Raucea
2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Andre Luis Dias ◽  
Afonso Celso Turcato ◽  
Guilherme Serpa Sestito ◽  
Murilo Silveira Rocha ◽  
Dennis Brandão ◽  
...  

Abstract Electric motors are widely used in the industry. Several studies have proposed methods to detect anomalies in their operation, but always using sensors dedicated to this purpose. In this sense, this work aims to fill gaps in related works presenting a method for the detection of faults in rotating machines driven by electric motors in motion control applications using PROFINET network and PROFIdrive profile. The proposed method does not require any additional or dedicated sensors to provide data to the diagnostic system. Instead, the proposed methodology is based on the analysis of data transmitted in the communication network, which already exists for control purposes. Support vector machine (SVM) is used as a classifier of five different mechanical faults. The results provide that the methodology is feasible and efficient under different machine operating conditions, achieving, in the worst case, 97.78% efficiency.


Author(s):  
Jonathon E. Slightam ◽  
Eric J. Barth ◽  
Mark L. Nagurka

Abstract Pneumatic double acting cylinders are able to provide inherent stiffness and force control for compliant motion control applications. Impedance control methods allow for a broad spectrum of mechanical properties of actuators to be achieved. The range of this spectrum can be increased by simultaneously controlling the actuator’s inherent stiffness and impedance, a concept explored in this paper. Presented here is a sliding mode impedance and stiffness controller for a servo-pneumatic double acting cylinder. Two proportional servo-valves are employed for simultaneous control of the virtual impedance and inherent stiffness of the pneumatic cylinder. Experimental results of tracking trajectories and contact are reported and discussed with respect to different approaches in the literature.


2019 ◽  
Author(s):  
Arnfinn Eielsen ◽  
John Leth ◽  
Andrew J. Fleming ◽  
Adrian Wills ◽  
Brett Ninness

This paper develops and experimentally evaluates a dither-based method for improved generation of arbitrary signals in digital-to-analogue converters that exhibits glitches --- essentially converting the glitches from high-frequency to low-frequency disturbances. One major benefit of this behaviour appears in closed-loop control applications, as the glitch disturbance can be moved from outside control law bandwidth to inside control law bandwidth, enabling suppression by feedback. A behavioural model of glitches is presented and the effect of applying a dither signal is analysed in detail. Analytical and experimental results demonstrate that a dither signal with sufficiently large amplitude can mitigate the effect of glitches, when used in conjunction with a low-pass filter. Severe glitches appear in various digital-to-analogue converter topologies, including converter topologies that are used in high-precision motion control applications, such as adaptive optics and scanning force microscopy. Glitches introduce impulse-like disturbances which have a broadband frequency distribution. Low-pass filtering alone does not provide sufficient attenuation, and in applications with feedback control only frequency content within the control law bandwidth is attenuated. Hence, a high-frequency disturbance such as a glitch will not be suppressed. The use of dithering to suppress glitches is therefore beneficial in applications where errors in signal conversion are a primary concern, such as high-precision motion control or accurate reference signal generation.


Sign in / Sign up

Export Citation Format

Share Document