Kinematic analysis of power-law relationship between jaw movement velocity and curvature

Author(s):  
K. Yashiro ◽  
M. Takagi ◽  
K. Takada
2021 ◽  
pp. 026765832110662
Author(s):  
Joanne Jingwen Li ◽  
Maria I. Grigos

This study aims to understand if Mandarin late learners of English can successfully manipulate acoustic and kinematic cues to deliver English stress contrast in production. Mandarin ( N = 8) and English ( N = 8) speakers were recorded producing English trochaic (initial stress) and iambic (final stress) items during a nonword repetition task. Speakers’ jaw movement for the utterances was tracked and analysed. Acoustic and kinematic cues were measured for each syllable, including acoustic duration, fundamental frequency (F0), and intensity, as well as jaw movement duration, displacement, peak velocity, and stiffness. Stress ratios (syllable 1 / syllable 2) were calculated for each cue and compared between groups. Results showed that English and Mandarin speakers had generally comparable performance in differentiating trochaic from iambic patterns, as well as in the degree of between-syllable contrast within each pattern. Between-group differences were only observed in acoustic duration and jaw movement velocity/stiffness. These results suggest that the experience with Mandarin stress contributes to Mandarin speakers’ overall successful production of English stress but also results in nonnative use of some acoustic/kinematic cues.


1996 ◽  
Vol 76 (5) ◽  
pp. 2853-2860 ◽  
Author(s):  
P. L. Gribble ◽  
D. J. Ostry

1. When subjects trace patterns such as ellipses, the instantaneous velocity of movements is related to the instantaneous curvature of the trajectories according to a power law-movements tend to slow down when curvature is high and speed up when curvature is low. It has been proposed that this relationship is centrally planned. 2. The arm's muscle properties and dynamics can significantly affect kinematics. Even under isometric conditions, muscle mechanical properties can affect the development of muscle forces and torques. Without a model that accounts for these effects, it is difficult to distinguish between kinematic patterns that are attributable to central control and patterns that arise because of dynamics and muscle properties and are not represented in the underlying control signals. 3. In this paper we address the nature of the control signals that underlie movements that obey the power law. We use a numerical simulation of arm movement control based on the lambda version of the equilibrium point hypothesis. We demonstrate that simulated elliptical and circular movements, and elliptical force trajectories generated under isometric conditions, obey the power law even though there was no relation between curvature and speed in the modeled control signals. 4. We suggest that limb dynamics and muscle mechanics-specifically, the springlike properties of muscles-can contribute significantly to the emergence of the power law relationship in kinematics. Thus, without a model that accounts for these effects, care must be taken when making inferences about the nature of neural control.


1998 ◽  
Vol 10 (6) ◽  
pp. 463-463
Author(s):  
Haruhisa Kawasaki ◽  

Superior analysis and simulation systems play an important part in robotics and mechatronics R&D. Developing apparatuses involves repeating planning, trial manufacture, experiments, analysis, and improvement. Simulation and analysis are now executed before trial manufacture, decreasing the number of trial manufacture, shortening development, and cutting development cost. Virtual reality is often applied to simulation, and commercialization without trial manufactures will eventually be possible. Most commercialized simulation software are being improved for general use based on software made by researchers because existing analysis and simulation do not function sufficiently and researchers are often required to develop their own analysis and simulation. Simulation developed for research thus may be used by many technical experts and researchers in the future. This special issue introduces seven reports on basic mechanism analysis developed to survey simulation research. Michisuke Jo et al. developed a mechanism kinetic analysis Motor Drive using FORTRAN and MATLAB. This article, entitled Kinematic Analysis of Mechanisms Using Motor Algebra and Graph Theory, considers kinematic analysis method using the latest drive version. Haruhisa Kawasaki et al. are developing robot analysis ROSAM II using C and Maple V. This article, entitled Symbolic Analysis of Robot Base Parameter Set Using Grobner-Basis, considers base parameter analysis of general robots with closed links. Hajime Morikawa et al. developed a robot simulator kinematically simulated by connecting graphic icons. This article, entitled Network-Based Robot Simulator Using Hierarchical Graphic Icons, considers construction of a robot simulator, kinetic analysis of multiple robot arms, dynamic analysis of forest trimmers, and an example applying remote control to space robots. Shigeki Toyama et al. developed general-use mechanism analysis simulator AI MOTION. This article, entitled Dynamic Autonomous Car Mobile Analysis Simulating Mechanical Systems Analysis, considers an autonomous car travel simulator dynamically modeling tires combined into AI MOTION. The simulator analyzes the connection of tire rigidity, car width, caster radius, and motion performance. Takayoshi Muto et al. developed dynamic behavior simulator BDSP for hydraulic systems. This article, entitled Software Package BDSP Developed to Simulate Hydraulic Systems, considers construction of BDSP that analyzes hydraulic systems using easy block diagrams. The simulator analyzes fluid line, nonlinear elements, and discrete time control. Shinichi Nakajima et al. developed a two-dimensional jaw movement simulator for clarifying the function of muscles in lower jaw motion. This article, entitled Development of 2-D Jaw Movement Simulator(JSN/SI), considers hardware and a control system for chewing food at a required force. Yoshiyuki Sankai et al., in Robot Objective Parallel Calculation and Real-time Control Using a Digital Signal Processor, consider parallel distributed and realtime control by DSP for constructing control in an actual robot. This issue discussed analysis and simulation developed for robotics and mechatronics R&D. Most systems are applicable to general-purpose situations. We hope this issue helps deepen the understanding of the status and applications of simulation research in mechatronics and promotes further development in the field.


1999 ◽  
Vol 173 ◽  
pp. 289-293 ◽  
Author(s):  
J.R. Donnison ◽  
L.I. Pettit

AbstractA Pareto distribution was used to model the magnitude data for short-period comets up to 1988. It was found using exponential probability plots that the brightness did not vary with period and that the cut-off point previously adopted can be supported statistically. Examination of the diameters of Trans-Neptunian bodies showed that a power law does not adequately fit the limited data available.


Author(s):  
L. -M. Peng ◽  
M. J. Whelan

In recent years there has been a trend in the structure determination of reconstructed surfaces to use high energy electron diffraction techniques, and to employ a kinematic approximation in analyzing the intensities of surface superlattice reflections. Experimentally this is motivated by the great success of the determination of the dimer adatom stacking fault (DAS) structure of the Si(111) 7 × 7 reconstructed surface.While in the case of transmission electron diffraction (TED) the validity of the kinematic approximation has been examined by using multislice calculations for Si and certain incident beam directions, far less has been done in the reflection high energy electron diffraction (RHEED) case. In this paper we aim to provide a thorough Bloch wave analysis of the various diffraction processes involved, and to set criteria on the validity for the kinematic analysis of the intensities of the surface superlattice reflections.The validity of the kinematic analysis, being common to both the TED and RHEED case, relies primarily on two underlying observations, namely (l)the surface superlattice scattering in the selvedge is kinematically dominating, and (2)the superlattice diffracted beams are uncoupled from the fundamental diffracted beams within the bulk.


1968 ◽  
Vol 11 (1) ◽  
pp. 169-178 ◽  
Author(s):  
Alan Gill ◽  
Charles I. Berlin

The unconditioned GSR’s elicited by tones of 60, 70, 80, and 90 dB SPL were largest in the mouse in the ranges around 10,000 Hz. The growth of response magnitude with intensity followed a power law (10 .17 to 10 .22 , depending upon frequency) and suggested that the unconditioned GSR magnitude assessed overall subjective magnitude of tones to the mouse in an orderly fashion. It is suggested that hearing sensitivity as assessed by these means may be closely related to the spectral content of the mouse’s vocalization as well as to the number of critically sensitive single units in the mouse’s VIIIth nerve.


1997 ◽  
Vol 40 (2) ◽  
pp. 400-404 ◽  
Author(s):  
Virginia A. Hinton ◽  
Winston M. C. Arokiasamy

It has been hypothesized that typical speech movements do not involve large muscular forces and that normal speakers use less than 20% of the maximum orofacial muscle contractile forces that are available (e.g., Amerman, 1993; Barlow & Abbs, 1984; Barlow & Netsell, 1986; DePaul & Brooks, 1993). However, no direct evidence for this hypothesis has been provided. This study investigated the percentage of maximum interlabial contact pressures (force per unit area) typically used during speech production. The primary conclusion of this study is that normal speakers typically use less than 20% of the available interlabial contact pressure, whether or not the jaw contributes to bilabial closure. Production of the phone [p] at conversational rate and intensity generated an average of 10.56% of maximum available interlabial pressure (MILP) when jaw movement was not restricted and 14.62% when jaw movement was eliminated.


Sign in / Sign up

Export Citation Format

Share Document