Optimum energy harvesting for series-connected power sources with uniform voltage distribution

Author(s):  
Kasemsan Siri ◽  
Michael Willhoff
Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1295 ◽  
Author(s):  
Junseon Park ◽  
Seungjin Lee ◽  
Joong Yull Park

Low-intensity winds can be useful power sources in the context of energy harvesting. This study aims to enhance the power generation capacity of a super micro wind turbine (SMWT) in low-intensity winds by modifying the blade geometry, which cannot be realized in conventional wind turbines owing to the stress concentration. By controlling the curved angle (θ) in the middle of the blade, the rotor performance can be improved, and the rotor diameter can be reduced to increase installation density. Experimental results indicated that the optimal θ value was 105°, at which the AC voltage was improved by 7.4% compared to that in the case of the basic model with θ = 0°. The maximum electric power output was 9.333 μW and the load resistance was 47.62 kΩ. Moreover, a computational fluid dynamics analysis was performed to clarify the pressure field and streamlines on and around the blade to demonstrate the aerodynamic performance of the SMWT. The proposed blade geometry is one of many possible designs that can enhance extremely small wind turbines for energy harvesting.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
François M. Guillot ◽  
Haskell W. Beckham ◽  
Johannes Leisen

In the past few years, the growing need for alternative power sources has generated considerable interest in the field of energy harvesting. A particularly exciting possibility within that field is the development of fabrics capable of harnessing mechanical energy and delivering electrical power to sensors and wearable devices. This study presents an evaluation of the electromechanical performance of hollow lead zirconate titanate (PZT) fibers as the basis for the construction of such fabrics. The fibers feature individual polymer claddings surrounding electrodes directly deposited onto both inside and outside ceramic surfaces. This configuration optimizes the amount of electrical energy available by placing the electrodes in direct contact with the surface of the material and by maximizing the active piezoelectric volume. Hollow fibers were electroded, encapsulated in a polymer cladding, poled and characterized in terms of their electromechanical properties. They were then glued to a vibrating cantilever beam equipped with a strain gauge, and their energy harvesting performance was measured. It was found that the fibers generated twice as much energy density as commercial state-of-the-art flexible composite sensors. Finally, the influence of the polymer cladding on the strain transmission to the fiber was evaluated. These fibers have the potential to be woven into fabrics that could harvest mechanical energy from the environment and could eventually be integrated into clothing.


2008 ◽  
Vol 57 ◽  
pp. 247-256 ◽  
Author(s):  
Danilo De Rossi ◽  
Federico Carpi ◽  
Fabia Galantini

This paper describes the early conception and latest developments of electroactive polymer (EAP)- based sensors, actuators and power sources, implemented as wearable devices for smart electronic textiles (e-textiles). Such textiles, functioning as multifunctional wearable human interfaces, are today considered relevant promoters of progress and useful tools in several biomedical field, such as biomonitoring, rehabilitation and telemedicine. This paper presents the more performing EAPbased devices developed by our lab and other research groups for sensing, actuating and energy harvesting, with reference to their already demonstrated or potential applicability to electronic textiles.


2011 ◽  
Author(s):  
J. Rastegar ◽  
R. Murray ◽  
C. Pereira ◽  
H.-L. Nguyen

2016 ◽  
Vol 2 (6) ◽  
pp. e1501624 ◽  
Author(s):  
Fang Yi ◽  
Xiaofeng Wang ◽  
Simiao Niu ◽  
Shengming Li ◽  
Yajiang Yin ◽  
...  

The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment.


Author(s):  
Angela Triplett ◽  
D. Dane Quinn

Advances in electronic and consumer technology are increasing the need for smaller, more efficient energy sources. Thus vibration-based energy harvesting, the scavenging of energy from existing ambient vibration sources and its conversion to useful electrical power, is becoming an increasingly attractive alternative to traditional power sources such as batteries. Energy harvesting devices have been developed based on a number of electro-mechanical coupling mechanisms and their design must be optimized to produce the maximum output for given environmental conditions. While the role of nonlinearities in the components has been shown to be significant in terms of the overall device efficiency, few studies have systematically investigated their influence on the system performance. In this work the role of a nonlinear piezoelectric relationship is considered on the performance of a vibration-based energy harvester. Using a Poincare´-Lindstedt perturbation analysis the response of the harvesting system is approximated, including mechanical damping, stiffness nonlinearities, and the above mentioned nonlinear piezoelectric constitutive relationship. The predicted behavior is then compared against numerical simulations of the original system, focusing on the relationship between the power generated by the device, the ambient vibration characteristics, and the nonlinearities in the system.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 19238-19246 ◽  
Author(s):  
Rugui Yao ◽  
Yanan Lu ◽  
Theodoros A. Tsiftsis ◽  
Nan Qi ◽  
Tamer Mekkawy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document