Functional Materials for Wearable Sensing, Actuating and Energy Harvesting

2008 ◽  
Vol 57 ◽  
pp. 247-256 ◽  
Author(s):  
Danilo De Rossi ◽  
Federico Carpi ◽  
Fabia Galantini

This paper describes the early conception and latest developments of electroactive polymer (EAP)- based sensors, actuators and power sources, implemented as wearable devices for smart electronic textiles (e-textiles). Such textiles, functioning as multifunctional wearable human interfaces, are today considered relevant promoters of progress and useful tools in several biomedical field, such as biomonitoring, rehabilitation and telemedicine. This paper presents the more performing EAPbased devices developed by our lab and other research groups for sensing, actuating and energy harvesting, with reference to their already demonstrated or potential applicability to electronic textiles.

2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


2021 ◽  
Author(s):  
Joana S Teixeira ◽  
Rui S Costa ◽  
Ana Pires ◽  
Andre M Pereira ◽  
Clara Pereira

The worldwide energy scarcity arising from the massive consumption of nonrenewable energy sources raised a global awareness on the need for cleaner and affordable energy solutions to mitigate climate change...


Author(s):  
Neng Xia ◽  
Dongdong Jin ◽  
Veronica Iacovacci ◽  
Li Zhang

Abstract Miniature robots and actuators with micrometer or millimeter scale size can be driven by diverse power sources, e.g., chemical fuels, light, magnetic, and acoustic fields. These machines have the potential to access complex narrow spaces, execute medical tasks, perform environmental monitoring, and manipulate micro-objects. Recent advancements in 3D printing techniques have demonstrated great benefits in manufacturing small-scale structures such as customized design with programmable physical properties. Combining 3D printing methods, functional polymers, and active control strategies enables these miniature machines with diverse functionalities to broaden their potentials in medical applications. Herein, this review provides an overview of 3D printing techniques applicable for the fabrication of small-scale machines and printable functional materials, including shape-morphing materials, biomaterials, composite polymers, and self-healing polymers. Functions and applications of tiny robots and actuators fabricated by 3D printing and future perspectives toward small-scale intelligent machines are discussed.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1295 ◽  
Author(s):  
Junseon Park ◽  
Seungjin Lee ◽  
Joong Yull Park

Low-intensity winds can be useful power sources in the context of energy harvesting. This study aims to enhance the power generation capacity of a super micro wind turbine (SMWT) in low-intensity winds by modifying the blade geometry, which cannot be realized in conventional wind turbines owing to the stress concentration. By controlling the curved angle (θ) in the middle of the blade, the rotor performance can be improved, and the rotor diameter can be reduced to increase installation density. Experimental results indicated that the optimal θ value was 105°, at which the AC voltage was improved by 7.4% compared to that in the case of the basic model with θ = 0°. The maximum electric power output was 9.333 μW and the load resistance was 47.62 kΩ. Moreover, a computational fluid dynamics analysis was performed to clarify the pressure field and streamlines on and around the blade to demonstrate the aerodynamic performance of the SMWT. The proposed blade geometry is one of many possible designs that can enhance extremely small wind turbines for energy harvesting.


Sign in / Sign up

Export Citation Format

Share Document