A design method for array antennas taking account of mutual coupling between elements. Dipole array antenna above the ground plane

Author(s):  
K. Sakaguchi ◽  
N. Hasebe

2020 ◽  
Vol 10 (21) ◽  
pp. 7686
Author(s):  
Sungpeel Kim ◽  
Jaehoon Choi

A quasi-Yagi slotted array antenna with fan-beam characteristics is proposed for 28 GHz 5G mobile terminals. The antenna is composed of a 1 × 8 slot antenna array with directors to enhance the half-power beamwidth (HPBW). The proposed antenna has a fan-beam radiation pattern with a simulated HPBW of 256.72° and a peak gain of 11.16 dBi. In addition, the proposed antenna covers ±48° using a beam steering mechanism. Mutual coupling reduction is achieved by inserting slits between the adjacent slot radiators on the ground plane. The simulated −10 dB reflection coefficient bandwidth of the proposed antenna is 1.79 GHz (27.03–28.82 GHz), and the mutual coupling between each of the slot radiators is lower than −25.02 dB over the 28 GHz target band (27.5–28.35 GHz). To investigate the effect of a human body in a practical environment, the power density was considered to estimate the electromagnetic exposure with a simplified skin model. The measured results were in good agreement with the simulated ones and demonstrated that the proposed antenna could be used for 5G mobile terminals.



2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
B. W. Bai ◽  
X. P. Li ◽  
Y. M. Liu ◽  
J. Xu

A plasma sheath enveloping a reentry vehicle would cause the failure of on-board antennas, which is an important effect that contributes to the “blackout” problem. The method of replacing the on-board single antenna with the array antennas and using beamforming technology has been proposed to mitigate “blackout” problem by many other researchers. Because the plasma sheath is a reflective medium, plasma will alter the mutual coupling between array elements and degrade the beamforming performance of array antenna. In this paper, the effects of the plasma sheath on the mutual coupling properties between adjacent array elements are studied utilizing the algorithm of finite integration technique. Results show that mutual coupling coefficients of array elements are deteriorating more seriously with the decrease of collision frequency. Moreover, when electron density and collision frequency are both large, plasma sheath improves the mutual coupling property of array elements; this conclusion suggests that replacing the on-board single antenna with the array antennas and using beamforming technology can be adopted to mitigate the blackout problem in this condition.



2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Shahram Mohanna ◽  
Ali Farahbakhsh ◽  
Saeed Tavakoli ◽  
Nasser Ghassemi

An effective solution to reduce both the mutual coupling and return loss of a microstrip array antenna consisting of rectangular patches is proposed. The patch is made concave in both horizontal and vertical sides. Applying the proposed structure to a microstrip array antenna having two elements, the effects of patch concavity on the mutual coupling and return loss are simulated and studied. To obtain a concave rectangular patch array antenna having low amounts of mutual coupling and return loss, the patch length and width as well as the amounts of concavities are optimized using an enhanced genetic algorithm. To verify the simulation results, then, the optimal array antenna is fabricated. The simulation and experimental results confirm that the optimal concave rectangular array antenna has low amounts of mutual coupling and return loss.





Author(s):  
K. Prahlada Rao ◽  
R. M. Vani ◽  
P. V. Hunagund

This article demonstrates the alleviation of mutual coupling of a simple and low-cost four-element microstrip array antenna by loading I-shaped slot-type electromagnetic band gap structure in the ground plane. FR-4 glass epoxy is used as dielectric substrate. Moreover, the proposed array antenna shows a better performance in terms of multi-band resonance. The antenna is resonating at four frequencies and a virtual size reduction of 78.48% is obtained. The designed array antenna possesses directional radiation properties. Mentor Graphics IE3D software is used to design and simulate the designed antennas and the measured results are obtained using vector network analyser.



2018 ◽  
Vol 7 (3.6) ◽  
pp. 13
Author(s):  
K Praveen Kumar ◽  
Habibullah Khan

In this paper, two new three layer (stacked) Electromagnetic Band Gap structures are proposed, named as Stacked Electromagnetic Band Gap (SEBG) and Progressive Stack Electromagnetic Band Gap (PSEBG) structures. Its electromagnetic (EM) properties are determined by using Finite element method (FEM) based simulator and obtained results are compared with classical mushroom type electromagnetic band gap (MEBG) structure. Both SEBG and PSEBG structures proposed in this paper consists of two layers above the conducting ground plane; a lower layer, contains array of small MEBGs with square patches and an upper layer contains square planar MEBG structure. Vertical conducting stubs passing through substrate shorting all square patches in both the layers with conducting ground. Three EBG structures are exhibiting the property of forbidden band gap (FBG), where surface wave propagation is restricted. The FBG property helps in minimization of mutual coupling between array antennas when electromagnetic band gap structures are incorporated between array elements. In this paper, the level of coefficient of mutual coupling between array antenna in the presence of SEBG and PSEBG are investigated, obtained results are compared with classical MEBG results. The co-efficient of mutual coupling is reduced up to 12dB in the presence of proposed models.



Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6257
Author(s):  
Bowen Bai ◽  
Zheng Zhang ◽  
Xiaoping Li ◽  
Chao Sun ◽  
Yanming Liu

This paper describes the integration of microstrip slot array antennas with dye-sensitized solar cells that can power array antennas at 5.8 GHz, ensuring normal communications. To appraise the antennas, a 2 × 2 circularly polarized microstrip slot array antenna integrated with dye-sensitized solar cells using a stacked design method was analyzed, fabricated and measured. The size of the entire array is 140 mm × 140 mm, where the size of each solar cell is 35 mm × 35 mm. The results show that the effect of the antenna has a slight influence on the output performance of the solar cells, and the interference of the output current of the solar cells to the antenna feeding system is negligible. The gain of the array antenna increases by 0.12 dB and the axial ratio is reduced to 1.50 dB after the integration of dye-sensitized solar cells. The integration saves a lot of space, and has the ability of self-sustaining power generation, thus providing reliable and long-term communication for various communication systems.



Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2066
Author(s):  
Jinhang Wang ◽  
Wenjie Cui ◽  
Yang Zhou ◽  
Ruipeng Liu ◽  
Mengjun Wang ◽  
...  

In order to increase the gain of an end-fire antenna array and improve its broadband characteristics, techniques using a dielectric lens and defected ground structure have been investigated in this paper. The element of the array was constructed using an antipodal tapered slot, and two pairs of U-slots were symmetrically cut on the edges of the two antipodal fins to obtain better performance regarding impedance and radiation in the wider band. While loading an ellipse dielectric lens onto each element, the direction and gain were enhanced at the higher frequency. Meanwhile, a defected ground structure was added on the ground plane to decline the mutual coupling of adjacent radiation arms. This design method was verified by a four-element array and a four-way Wilkinson power divider was used as a feed network. Finally, a fabricated sample was tested. Experimental results showed the designed array was available.



1989 ◽  
Vol 72 (10) ◽  
pp. 103-110 ◽  
Author(s):  
Yoshihiko Konishi ◽  
Hitoshi Mizutamari ◽  
Shin-Ichi Sato ◽  
Seiji Mano ◽  
Takashi Katagi


Sign in / Sign up

Export Citation Format

Share Document