Low power design for SoC with power management unit

Author(s):  
Daying Sun ◽  
Shen Xu ◽  
Weifeng Sun ◽  
Shengli Lu ◽  
Longxing Shi
2018 ◽  
Vol 7 (1) ◽  
pp. 299-308 ◽  
Author(s):  
Pierre Bellier ◽  
Philippe Laurent ◽  
Serguei Stoukatch ◽  
François Dupont ◽  
Laura Joris ◽  
...  

Abstract. In this work, we developed and characterised an autonomous micro-platform including several types of sensors, an advanced power management unit (PMU) and radio frequency (RF) transmission capabilities. Autonomy requires integration of an energy harvester, an energy storage device, a PMU, ultra-low-power components (including sensors) and optimized software. Our choice was to use commercial off-the-shelf components with low-power consumption, low cost and compactness as selection criteria. For the multi-purpose micro-platform, we choose to include the most common sensors (such as temperature, humidity, luminosity, acceleration, etc.) and to integrate them in one miniaturised autonomous device. A processing unit is embedded in the system. It allows for data acquisition from each sensor individually, simple data processing, and storing and/or wireless data transmission. Such a system can be used as stand-alone, with an internal storage in a non-volatile memory, or as a node in a wireless network, with bi-directional communication with a hub device where data can be analysed further. According to specific application requirements, system settings can be adjusted, such as the sampling rate, the resolution and the processing of the sensor data. Parallel to full autonomous functionality, the low-power design enables us to power the system by a small battery leading to a high degree of autonomy at a high sampling rate. Therefore, we also developed an alternative battery-powered version of the micro-platform that increases the range of applications. As such, the system is highly versatile and due to its reduced dimensions, it can be used nearly everywhere. Typical applications include the Internet of Things, Industry 4.0, home automation and building structural health monitoring.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2420 ◽  
Author(s):  
Sung Jin Kim ◽  
Dong Gyu Kim ◽  
Seong Jin Oh ◽  
Dong Soo Lee ◽  
Young Gun Pu ◽  
...  

This paper presents a low power Gaussian Frequency-Shift Keying (GFSK) transceiver (TRX) with high efficiency power management unit and integrated Single-Pole Double-Throw switch for Bluetooth low energy application. Receiver (RX) is implemented with the RF front-end with an inductor-less low-noise transconductance amplifier and 25% duty-cycle current-driven passive mixers, and low-IF baseband analog with a complex Band Pass Filter(BPF). A transmitter (TX) employs an analog phase-locked loop (PLL) with one-point GFSK modulation and class-D digital Power Amplifier (PA) to reduce current consumption. In the analog PLL, low power Voltage Controlled Oscillator (VCO) is designed and the automatic bandwidth calibration is proposed to optimize bandwidth, settling time, and phase noise by adjusting the charge pump current, VCO gain, and resistor and capacitor values of the loop filter. The Analog Digital Converter (ADC) adopts straightforward architecture to reduce current consumption. The DC-DC buck converter operates by automatically selecting an optimum mode among triple modes, Pulse Width Modulation (PWM), Pulse Frequency Modulation (PFM), and retention, depending on load current. The TRX is implemented using 1P6M 55-nm Complementary Metal–Oxide–Semiconductor (CMOS) technology and the die area is 1.79 mm2. TRX consumes 5 mW on RX and 6 mW on the TX when PA is 0-dBm. Measured sensitivity of RX is −95 dBm at 2.44 GHz. Efficiency of the DC-DC buck converter is over 89% when the load current is higher than 2.5 mA in the PWM mode. Quiescent current consumption is 400 nA from a supply voltage of 3 V in the retention mode.


Author(s):  
Gregor Kowalczyk ◽  
Markus Dielacher ◽  
Martin Flatscher ◽  
Josef Prainsack ◽  
Hartwig Unterassinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document