Analysis of Permanent Magnet Synchronous Motor Current in Healthy and Short Circuit Failure Cases With Discrete Wavelet Transform

Author(s):  
Timur LALE ◽  
Mehmet Sirac OZERDEM ◽  
Bilal GUMUS
Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1023
Author(s):  
Arigela Satya Veerendra ◽  
Akeel A. Shah ◽  
Mohd Rusllim Mohamed ◽  
Chavali Punya Sekhar ◽  
Puiki Leung

The multilevel inverter-based drive system is greatly affected by several faults occurring on switching elements. A faulty switch in the inverter can potentially lead to more losses, extensive downtime and reduced reliability. In this paper, a novel fault identification and reconfiguration process is proposed by using discrete wavelet transform and auxiliary switching cells. Here, the discrete wavelet transform exploits a multiresolution analysis with a feature extraction methodology for fault identification and subsequently for reconfiguration. For increasing the reliability, auxiliary switching cells are integrated to replace faulty cells in a proposed reduced-switch 5-level multilevel inverter topology. The novel reconfiguration scheme compensates open circuit and short circuit faults. The complexity of the proposed system is lower relative to existing methods. This proposed technique effectively identifies and classifies faults using the multiresolution analysis. Furthermore, the measured current and voltage values during fault reconfiguration are close to those under healthy conditions. The performance is verified using the MATLAB/Simulink platform and a hardware model.


Author(s):  
Xin Wang ◽  
C. Steve Suh

Permanent magnet synchronous motors are essential components in a wide range of applications in which their unique benefits are explored. However, in order for a permanent magnet synchronous motor to achieve satisfactory performance, particular control frameworks are essential. After all, permanent magnet synchronous motor is an AC machine, which is characterized by its complex structure and strongly coupled system states. Therefore, in order for it to achieve satisfactory dynamic performance, advanced control techniques are the only solution. This paper presents a precise speed control of permanent magnet synchronous motors using the nonlinear time-frequency control concept. The novel aspect of this nonlinear time-frequency control, which is an integration of discrete wavelet transformation and adaptive control, is its ability in analyzing the fundamental temporal and spectral qualities inherent of a permanent magnet synchronous motor and exerting control signals accordingly. Simulation results verifies that the proposed nonlinear time-frequency control scheme is feasible for alleviating the nonlinear behavior of the permanent magnet synchronous motor which hampers the tracking of speed with desired precision.


Sign in / Sign up

Export Citation Format

Share Document