A novel high-throughput, low-complexity bit-flipping decoder for LDPC codes

Author(s):  
Khoa Le ◽  
Fakhreddine Ghaffari ◽  
David Declercq ◽  
Bane Vasic ◽  
Chris Winstead
2013 ◽  
Vol 710 ◽  
pp. 723-726
Author(s):  
Yuan Hua Liu ◽  
Mei Ling Zhang

A novel bit-flipping (BF) algorithm with low complexity for high-throughput decoding of low-density parity-check (LDPC) codes is presented. At each iteration, a novel threshold pattern is used to determine the code bits whether to be flipped or not, and the flipping error probability is effectively decreased. Compared with the weighted BF algorithm and its modifications, the modified BF algorithm has significantly lower complexity and decoding time. Through simulations the proposed BF algorithm is shown to achieve excellent performance and fast convergence speed while maintaining significantly low complexity thus facilitating high-throughput decoding.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 516
Author(s):  
Tram Thi Bao Nguyen ◽  
Tuy Nguyen Tan ◽  
Hanho Lee

This paper presents a pipelined layered quasi-cyclic low-density parity-check (QC-LDPC) decoder architecture targeting low-complexity, high-throughput, and efficient use of hardware resources compliant with the specifications of 5G new radio (NR) wireless communication standard. First, a combined min-sum (CMS) decoding algorithm, which is a combination of the offset min-sum and the original min-sum algorithm, is proposed. Then, a low-complexity and high-throughput pipelined layered QC-LDPC decoder architecture for enhanced mobile broadband specifications in 5G NR wireless standards based on CMS algorithm with pipeline layered scheduling is presented. Enhanced versions of check node-based processor architectures are proposed to improve the complexity of the LDPC decoders. An efficient minimum-finder for the check node unit architecture that reduces the hardware required for the computation of the first two minima is introduced. Moreover, a low complexity a posteriori information update unit architecture, which only requires one adder array for their operations, is presented. The proposed architecture shows significant improvements in terms of area and throughput compared to other QC-LDPC decoder architectures available in the literature.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 700
Author(s):  
Yufei Zhu ◽  
Zuocheng Xing ◽  
Zerun Li ◽  
Yang Zhang ◽  
Yifan Hu

This paper presents a novel parallel quasi-cyclic low-density parity-check (QC-LDPC) encoding algorithm with low complexity, which is compatible with the 5th generation (5G) new radio (NR). Basing on the algorithm, we propose a high area-efficient parallel encoder with compatible architecture. The proposed encoder has the advantages of parallel encoding and pipelined operations. Furthermore, it is designed as a configurable encoding structure, which is fully compatible with different base graphs of 5G LDPC. Thus, the encoder architecture has flexible adaptability for various 5G LDPC codes. The proposed encoder was synthesized in a 65 nm CMOS technology. According to the encoder architecture, we implemented nine encoders for distributed lifting sizes of two base graphs. The eperimental results show that the encoder has high performance and significant area-efficiency, which is better than related prior art. This work includes a whole set of encoding algorithm and the compatible encoders, which are fully compatible with different base graphs of 5G LDPC codes. Therefore, it has more flexible adaptability for various 5G application scenarios.


2012 ◽  
Vol 25 (3) ◽  
pp. 370-382
Author(s):  
Virasit Imtawil ◽  
Mongkol Kupimai ◽  
Anan Kruesubthaworn ◽  
Apirat Siritaratiwat ◽  
Anupap Meesomboon
Keyword(s):  

Author(s):  
Fulong Wang ◽  
Ming Zhan ◽  
Qian Zhang ◽  
Hao Tang ◽  
Yunkai Feng ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document