Simulation Calculation of Magnetostrictive Vibration of 10kV Distribution Transformer

Author(s):  
Hao Cao ◽  
Ling Lu ◽  
Jiwen Peng ◽  
Ziyin Xie
1999 ◽  
Vol 39 (4) ◽  
pp. 103-111 ◽  
Author(s):  
Frank Obenaus ◽  
Karl-Heinz Rosenwinkel ◽  
Jens Alex ◽  
Ralf Tschepetzki ◽  
Ulrich Jumar

This report presents the main components of a system for the model-based control of aerobic biological wastewater treatment plants. The crucial component is a model which is linked to the actual processes via several interfaces and which contains a unit which can immediately follow up the current process state. The simulation calculation of the model is based on data which are yielded by on-line measuring devices. If the sensors should fail at times, there are available a number of alternative concepts, some of which are based on the calculations of artificial neural networks or linear methods.


2019 ◽  
Vol 2019 (16) ◽  
pp. 1958-1961
Author(s):  
Yibin Liu ◽  
Deliang Liang ◽  
Mingkang Zhang ◽  
Yang Liang ◽  
Qixu Chen ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
pp. 5322
Author(s):  
Yang Ding ◽  
Tong-Lin Yang ◽  
Hui Liu ◽  
Zhen Han ◽  
Shuang-Xi Zhou ◽  
...  

Cement is widely used in marine concrete, and its resistance to chloride ion corrosion has been widely considered. In this paper, based on a laboratory test, the influence of different hydrostatic pressures, coarse aggregate contents and w/c ratios on the chloride resistance performance is analyzed. Based on COMSOL finite element software, a two-dimensional cementitious materials model is established, and the simulation results are compared with the experimental results. The results show that the penetration depth of chloride ions in cement increases with the increase of the w/c ratio. Under the hydrostatic pressure of 0 MPa, when the w/c ratio is 0.35, the penetration depth of chloride ions is 7.4 mm, and the simulation result is 8.0 mm. When the w/c ratio is 0.45, the penetration depth of chloride ions is 9.3 mm, and the simulation result is 9.9 mm. When the w/c ratio is 0.55, the penetration depth of chloride ions is 12.9 mm, and the simulation result is 12.1 mm. Under different hydrostatic pressures, the penetration depth of chloride ions obviously changes, and with the increase in hydrostatic pressure, the penetration depth of chloride ions deepens. Under the w/c ratio of 0.35, when the hydrostatic pressure is 0.5 MPa, the penetration depth of chloride ions is 11.3 mm, and the simulation result is 12.1 mm. When the hydrostatic pressure is 1.0 MPa, the penetration depth of chloride ions is 16.2 mm, and the simulation result is 17.5 mm.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1215
Author(s):  
Alvaro Carreno ◽  
Marcelo Perez ◽  
Carlos Baier ◽  
Alex Huang ◽  
Sanjay Rajendran ◽  
...  

Distribution systems are under constant stress due to their highly variable operating conditions, which jeopardize distribution transformers and lines, degrading the end-user service. Due to transformer regulation, variable loads can generate voltage profiles out of the acceptable bands recommended by grid codes, affecting the quality of service. At the same time, nonlinear loads, such as diode bridge rectifiers without power factor correction systems, generate nonlinear currents that affect the distribution transformer operation, reducing its lifetime. Variable loads can be commonly found at domiciliary levels due to the random operation of home appliances, but recently also due to electric vehicle charging stations, where the distribution transformer can cyclically vary between no-load, rated and overrated load. Thus, the distribution transformer can not safely operate under highly-dynamic and stressful conditions, requiring the support of alternative systems. Among the existing solutions, hybrid transformers, which are composed of a conventional transformer and a power converter, are an interesting alternative to cope with several power quality problems. This article is a review of the available literature about hybrid distribution transformers.


Sign in / Sign up

Export Citation Format

Share Document