Modelling of Baltic Sea inflow events and deep water currents

Author(s):  
S. Miladinova ◽  
A. Stips
Keyword(s):  
Author(s):  
Steven R. Winterstein ◽  
Sverre Haver ◽  
Alok K. Jha ◽  
Borge Kvingedal ◽  
Einar Nygaard

To design marine structures in deep water, currents must be modelled accurately as a function of depth. These models often take the form of T-year profiles, which assume the T-year extreme current speed occurs simultaneously at each depth. To better reflect the spatial correlation in the current speeds versus depth, we have recently introduced Turkstra current profiles. These assign the T-year speed at one depth, and “associated” speeds expected to occur simultaneously at other depths. Two essentially decoupled steps are required: (1) marginal analysis to estimate T-year extremes, and (2) some type of regression to find associated values. The result is a set of current profiles, each of which coincides with the T-year profile at a single depth and is reduced elsewhere. Our previous work with Turkstra profiles suggested that, when applied in an unbiased fashion, they could produce unconservative estimates of extreme loads. This is in direct contrast to the findings of Statoil, whose similar (“CCA”) current profiles have generally been found to yield conservative load estimates. This paper addresses this contradiction. In the process, we find considerable differences can arise in precisely how one performs steps 1 and 2 above. The net finding is to favor methods that properly emphasize the upper tails of the data—e.g., using peak-over-threshold (“POT”) data, and regression based on class means—rather than standard analyses that weigh all data equally. By applying such tail-sensitive methods to our dataset, we find the unconservative trend in Turkstra profiles to essentially vanish. For our data, these tail-fit results yield profiles with both larger marginal extremes, and broader profiles surrounding these extremes—hence the title of this paper.


2018 ◽  
Vol 15 (9) ◽  
pp. 3003-3025 ◽  
Author(s):  
Jakob Walve ◽  
Maria Sandberg ◽  
Ulf Larsson ◽  
Christer Lännergren

Abstract. Internal phosphorus (P) loading from sediments, controlled by hypoxia, is often assumed to hamper the recovery of lakes and coastal areas from eutrophication. In the early 1970s, the external P load to the inner archipelago of Stockholm, Sweden (Baltic Sea), was drastically reduced by improved sewage treatment, but the internal P loading and its controlling factors have been poorly quantified. We use two slightly different four-layer box models to calculate the area's seasonal and annual P balance (input–export) and the internal P exchange with sediments in 1968–2015. For 10–20 years after the main P load reduction, there was a negative P balance, small in comparison to the external load, and probably due to release from legacy sediment P storage. Later, the stabilized, near-neutral P balance indicates no remaining internal loading from legacy P, but P retention is low, despite improved oxygen conditions. Seasonally, sediments are a P sink in spring and a P source in summer and autumn. Most of the deep-water P release from sediments in summer–autumn appears to be derived from the settled spring bloom and is exported to outer areas during winter. Oxygen consumption and P release in the deep water are generally tightly coupled, indicating limited iron control of P release. However, enhanced P release in years of deep-water hypoxia suggests some contribution from redox-sensitive P pools. Increasing deep-water temperatures that stimulate oxygen consumption rates in early summer have counteracted the effect of lowered organic matter sedimentation on oxygen concentrations. Since the P turnover time is short and legacy P small, measures to bind P in Stockholm inner archipelago sediments would primarily accumulate recent P inputs, imported from the Baltic Sea and from Lake Mälaren.


2019 ◽  
Author(s):  
Martin Jakobsson ◽  
Christian Stranne ◽  
Matt O'Regan ◽  
Sarah L. Greenwood ◽  
Bo Gustafsson ◽  
...  

Abstract. Marine science and engineering commonly require reliable information about seafloor depth (bathymetry), e.g. for studies of ocean circulation, bottom habitats, fishing resources, sediment transport, geohazards and site selection for platforms and cables. Baltic Sea bathymetric properties are analysed here using the using the newly released Digital Bathymetric Model (DBM) by the European Marine Observation and Data Network (EMODnet). The analyses include hypsometry, volume, descriptive depth statistics, and km-scale seafloor ruggedness, i.e. terrain heterogeneity, for the Baltic Sea as a whole as well as for 17 sub-basins defined by the Baltic Marine Environment Protection Commission (HELCOM). We compare the new EMODnet DBM with IOWTOPO, the previously most widely used DBM of the Baltic Sea which has served as the primary gridded bathymetric resource in physical and environmental studies for nearly two decades. The area of deep water exchange between the Bothnian Sea and the Northern Baltic Proper across the Åland Sea is specifically analysed in terms of depths and locations of critical bathymetric sills. The EMODnet DBM provides a bathymetric sill depth of 88 m at the northern side of the Åland Sea and 60 m at the southern side, differing from previously identified sill depths of 100 and 70 m respectively. High-resolution multibeam bathymetry acquired from this deep water exchange path, where vigorous bottom currents interacted with the seafloor, allows us to assess what we are missing in presently available DBMs in terms of physical characterisation and our ability to then interpret seafloor processes and highlights the need for continued work towards complete high-resolution mapping of the Baltic Sea seafloor.


2019 ◽  
Author(s):  
Thomas Neumann ◽  
Herbert Siegel ◽  
Matthias Moros ◽  
Monika Gerth ◽  
Madline Kniebusch ◽  
...  

Abstract. The Baltic Sea is a semi-enclosed, brackish water sea in northern Europe. The deep basins of the central Baltic Sea regularly show hypoxic conditions. In contrast, the northern parts of the Baltic Sea, the Bothnian Sea and Bay, are well oxygenated. Lateral inflows or a ventilation due to convection are possible mechanisms for high oxygen concentrations in the deep water of the northern Baltic Sea. Owing to the high latitudes of the northern Baltic, this region is regularly covered by sea ice during the winter season. In March 2017, the RV Maria S. Merian was for two days in the Bothnian Bay collecting ice core samples, brine water, and CTD profiles. The bulk sea ice salinity was on average 0.6 g/kg and in brine samples, a salinity of 11.5 g/kg and 17.8 g/kg have been measured. At one station, the CTD profiles indicated a recent ventilation event of the deep water. A water mass analysis showed that the ventilation is most probably due to mixing of Bothnian Sea and Bothnian Bay surface water which results in sufficient dense water able to replace older bottom water. However, the high salinity of brine provides the potential for forming dense bottom water masses as well.


2019 ◽  
Vol 46 (1) ◽  
pp. 33-43 ◽  
Author(s):  
C. Leah Devlin

Encouraged by naturalists Robert Jameson and Joseph Banks, whaler William Scoresby became an expert on the natural and physical processes at work in the European Arctic. Original letters between Scoresby and these naturalists, housed in the archive of the Whitby Literary and Philosophical Society (Yorkshire, England), document in the language of the times his biological observations and experiments in physical oceanography. Scoresby's researches resulted in An Account of the Arctic Regions, with a History and Description of the Northern Whale-fishery in 1820, which became a seminal work in Arctic science. Among the prescient observations in An Account of the Arctic Regions was a description of deep strata of water, under currents moving in different directions from the surface. A copy of An Account of the Arctic Regions was given as a gift to Norwegian scientist-explorer Fridtjof Nansen in 1897 upon the completion of the Fram expedition (1893–1896) and still resides in his personal library in Norway. In it is an underlined passage, suggesting that Nansen had read the whaler's book, perhaps in preparation for writing his own volumes on Arctic science, The Norwegian North Polar Expedition, 1893–1896 (1900–1906). Then, by inference, Nansen had been familiar with Scoresby's description of the under currents. In The Norwegian North Polar Expedition Nansen wrote that he had observed similar patterns of deep-water movements during the Fram expedition. This phenomenon must have perplexed him, because he posed the problem to the Swedish mathematician-oceanographer Vagn Walfrid Ekman, who mathematically described the water movement. Ekman's resulting model, a spiral staircase of descending deep-water currents, became known as the Ekman Spiral.


2014 ◽  
Vol 119 (2) ◽  
pp. 1465-1487 ◽  
Author(s):  
Peter L. Holtermann ◽  
Hans Burchard ◽  
Ulf Gräwe ◽  
Knut Klingbeil ◽  
Lars Umlauf

Sign in / Sign up

Export Citation Format

Share Document