Comparison of Responses of Ion-Channel and Simplified Pacemaker Cell Models on External Stimulation

Author(s):  
Maxim Ryzhii ◽  
Elena Ryzhii
Author(s):  
Jonathan Wong ◽  
Oscar Abilez ◽  
Ellen Kuhl

Channelrhodopsin-2 (ChR2) is a light-activated ion channel that can allow scientists to electrically activate cells via optical stimulation. Using a combination of existing computational electrophysiological and mechanical cardiac cell models with a novel ChR2 ion channel model, we created a model for ChR2-transduced cardiac myocytes. We implemented this model into a commonly available finite element platform and simulated both the single cell and the tissue electromechanical response. Our simulations show that it is possible to stimulate cardiac tissue optically with ChR2-transduced cells.


Author(s):  
Anirban Nandi ◽  
Tom Chartrand ◽  
Werner Van Geit ◽  
Anatoly Buchin ◽  
Zizhen Yao ◽  
...  

AbstractIdentifying the cell types constituting brain circuits is a fundamental question in neuroscience and motivates the generation of taxonomies based on electrophysiological, morphological and molecular single cell properties. Establishing the correspondence across data modalities and understanding the underlying principles has proven challenging. Bio-realistic computational models offer the ability to probe cause-and-effect and have historically been used to explore phenomena at the single-neuron level. Here we introduce a computational optimization workflow used for the generation and evaluation of more than 130 million single neuron models with active conductances. These models were based on 230 in vitro electrophysiological experiments followed by morphological reconstruction from the mouse visual cortex. We show that distinct ion channel conductance vectors exist that distinguish between major cortical classes with passive and h-channel conductances emerging as particularly important for classification. Next, using models of genetically defined classes, we show that differences in specific conductances predicted from the models reflect differences in gene expression in excitatory and inhibitory cell types as experimentally validated by single-cell RNA-sequencing. The differences in these conductances, in turn, explain many of the electrophysiological differences observed between cell types. Finally, we show the robustness of the herein generated single-cell models as representations and realizations of specific cell types in face of biological variability and optimization complexity. Our computational effort generated models that reconcile major single-cell data modalities that define cell types allowing for causal relationships to be examined.HighlightsGeneration and evaluation of more than 130 million single-cell models with active conductances along the reconstructed morphology faithfully recapitulate the electrophysiology of 230 in vitro experiments.Optimized ion channel conductances along the cellular morphology (‘all-active’) are characteristic of model complexity and offer enhanced biophysical realism.Ion channel conductance vectors of all-active models classify transcriptomically defined cell-types.Cell type differences in ion channel conductances predicted by the models correlate with experimentally measured single-cell gene expression differences in inhibitory (Pvalb, Sst, Htr3a) and excitatory (Nr5a1, Rbp4) classes.A set of ion channel conductances identified by comparing between cell type model populations explain electrophysiology differences between these types in simulations and brain slice experiments.All-active models recapitulate multimodal properties of excitatory and inhibitory cell types offering a systematic and causal way of linking differences between them.


Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
A Vasas ◽  
P Orvos ◽  
L Tálosi ◽  
P Forgo ◽  
G Pinke ◽  
...  

2005 ◽  
Vol 36 (02) ◽  
Author(s):  
CM Becker ◽  
J Brill ◽  
K Becker
Keyword(s):  

2011 ◽  
Vol 7 (2) ◽  
pp. 97 ◽  
Author(s):  
Niels Voigt ◽  
Dobromir Dobrev ◽  
◽  

Atrial fibrillation (AF) is the most common arrhythmia and is associated with substantial cardiovascular morbidity and mortality, with stroke being the most critical complication. Present drugs used for the therapy of AF (antiarrhythmics and anticoagulants) have major limitations, including incomplete efficacy, risks of life-threatening proarrhythmic events and bleeding complications. Non-pharmacological ablation procedures are efficient and apparently safe, but the very large size of the patient population allows ablation treatment of only a small number of patients. These limitations largely result from limited knowledge about the underlying mechanisms of AF and there is a hope that a better understanding of the molecular basis of AF may lead to the discovery of safer and more effective therapeutic targets. This article reviews the current knowledge about AF-related ion-channel remodelling and discusses how these alterations might affect the efficacy of antiarrhythmic drugs.


2003 ◽  
Vol 9 (1) ◽  
pp. 49-58
Author(s):  
Margit Asmild ◽  
Nicholas Oswald ◽  
Karen M. Krzywkowski ◽  
Søren Friis ◽  
Rasmus B. Jacobsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document