An approach for extracting big micro-scale severe weather region trajectories automatically from meteorological radar data

Author(s):  
Xingang Wang ◽  
Zhigang Gai ◽  
Suiping Qi
Author(s):  
Mark Weber ◽  
Kurt Hondl ◽  
Nusrat Yussouf ◽  
Youngsun Jung ◽  
Derek Stratman ◽  
...  

AbstractThis article summarizes research and risk reduction that will inform acquisition decisions regarding NOAA’s future national operational weather radar network. A key alternative being evaluated is polarimetric phased-array radar (PAR). Research indicates PAR can plausibly achieve fast, adaptive volumetric scanning, with associated benefits for severe-weather warning performance. We assess these benefits using storm observations and analyses, observing system simulation experiments, and real radar-data assimilation studies. Changes in the number and/or locations of radars in the future network could improve coverage at low altitude. Analysis of benefits that might be so realized indicates the possibility for additional improvement in severe-weather and flash-flood warning performance, with associated reduction in casualties. Simulations are used to evaluate techniques for rapid volumetric scanning and assess data quality characteristics of PAR. Finally, we describe progress in developing methods to compensate for polarimetric variable estimate biases introduced by electronic beam-steering. A research-to-operations (R2O) strategy for the PAR alternative for the WSR-88D replacement network is presented.


2019 ◽  
Vol 11 (12) ◽  
pp. 1436 ◽  
Author(s):  
Skripniková ◽  
Řezáčová

The comparative analysis of radar-based hail detection methods presented here, uses C-band polarimetric radar data from Czech territory for 5 stormy days in May and June 2016. The 27 hail events were selected from hail reports of the European Severe Weather Database (ESWD) along with 21 heavy rain events. The hail detection results compared in this study were obtained using a criterion, which is based on single-polarization radar data and a technique, which uses dual-polarization radar data. Both techniques successfully detected large hail events in a similar way and showed a strong agreement. The hail detection, as applied to heavy rain events, indicated a weak enhancement of the number of false detected hail pixels via the dual-polarization hydrometeor classification. We also examined the performance of hail size detection from radar data using both single- and dual-polarization methods. Both the methods recognized events with large hail but could not select the reported events with maximum hail size (diameter above 4 cm).


2018 ◽  
Vol 146 (10) ◽  
pp. 3461-3480 ◽  
Author(s):  
Jason M. Apke ◽  
John R. Mecikalski ◽  
Kristopher Bedka ◽  
Eugene W. McCaul ◽  
Cameron R. Homeyer ◽  
...  

Abstract Rapid acceleration of cloud-top outflow near vigorous storm updrafts can be readily observed in Geostationary Operational Environmental Satellite-14 (GOES-14) super rapid scan (SRS; 60 s) mode data. Conventional wisdom implies that this outflow is related to the intensity of updrafts and the formation of severe weather. However, from an SRS satellite perspective, the pairing of observed expansion and updraft intensity has not been objectively derived and documented. The goal of this study is to relate GOES-14 SRS-derived cloud-top horizontal divergence (CTD) over deep convection to internal updraft characteristics, and document evolution for severe and nonsevere thunderstorms. A new SRS flow derivation system is presented here to estimate storm-scale (<20 km) CTD. This CTD field is coupled with other proxies for storm updraft location and intensity such as overshooting tops (OTs), total lightning flash rates, and three-dimensional flow fields derived from dual-Doppler radar data. Objectively identified OTs with (without) matching CTD maxima were more (less) likely to be associated with radar-observed deep convection and severe weather reports at the ground, suggesting that some OTs were incorrectly identified. The correlation between CTD magnitude, maximum updraft speed, and total lightning was strongly positive for a nonsupercell pulse storm, and weakly positive for a supercell with multiple updraft pulses present. The relationship for the supercell was nonlinear, though larger flash rates are found during periods of larger CTD. Analysis here suggests that combining CTD with OTs and total lightning could have severe weather nowcasting value.


2005 ◽  
Author(s):  
L. Alparone ◽  
G. Benelli ◽  
A. Freni ◽  
D. Giuli ◽  
S. Minuti

2020 ◽  
Author(s):  
Damjan Jelic ◽  
Petra Mikus Jurkovic ◽  
Barbara Malecic ◽  
Barbara Vodaric Surija ◽  
Maja Telisman Prtenjak ◽  
...  

<p>In western and central regions of Croatia, as well as Istria peninsula, hail activity is monitored by hail pads and hail observations, the analyses of which shows that these regions have a significant frequency of high-intensity hail events. On 25 June 2017 weather conditions were favorable for development of several MSC in the region, some of which organized into a squall lines, causing severe weather effects over larger portion of Croatia. Hail pad networks reported 46 records of hail all over the region introducing one of the largest number of records in one day. Hail size varied between 1 and 2 cm with exception of 2 stations recording 2.5 and 3.1 cm diameters. Since the episode covers large area and offers high number of hail pad data it is suited for testing other indirect methods for assessment of hail. We are investigating capabilities of satellite products based on HRV and colored enhanced IR 10.8 µm channels (overshooting tops, plume, cold ring...), lightning activity and lightning jump activity to estimate hail occurrence and for the first time for Croatia, inspect radar products in assessing hail intensity.</p>


Sign in / Sign up

Export Citation Format

Share Document