Skin neoplasm diagnostics using combined spectral method in visible and near infrared regions

Author(s):  
V. P. Zakharov ◽  
I. A. Bratchenko ◽  
D. N. Artemyev ◽  
O. O. Myakinin ◽  
Yu. A. Khristoforova ◽  
...  
2016 ◽  
pp. 49-56
Author(s):  
Katalin Bökfi ◽  
Attila Nagy ◽  
Péter Riczu ◽  
Nikoletta Gyug ◽  
Mihály Petis ◽  
...  

  The separate collection of poultry slaughterhouse trimmings and blood is partially solved in Hungary. Only properly prepared animal by-products, protein meals can be utilized as animal feed additive. However, different protein meals are appropriate for feeding different animal species. That is the reason why it is important to avoid accidental cross contamination of the products. Meat and blood meal produced on the same technological line, therefore mixing of the products can happen in various proportions during the shift of production.   Thus the aim of this study is to develop a spectral method which will allow to estimate the ratio of meat and blood protein meal in the final product. During the test the products were mixed in different proportions and were examined by the spectral method. Measurements were conducted with AvaSpec 2048 spectrometer in visible (VIS) and in near infrared (NIR) wavelength range (400–1000 nm) to define the spectral differentiation of the different meal products. Significant difference can be detected in spectral reflectance between the meat and blood product in the VIS-NIR range. The blood product has a characteristic spectral property: in the range of 600 and 735 nm reflectance values are increasing following a sigmoid curve. This property is not observed in the case of meat meal: close to linear rising is detected. Effective protein rate and purity detection could be made by Blood Product Sensitive Mixing Index (BPSMI – R930/R600), and by the calculation of inflection point in 600–735 nm.  


Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7875-7887 ◽  
Author(s):  
Ying Lan ◽  
Xiaohui Zhu ◽  
Ming Tang ◽  
Yihan Wu ◽  
Jing Zhang ◽  
...  

A near-infrared (NIR) activated theranostic nanoplatform based on upconversion nanoparticles (UCNPs) is developed in order to overcome the hypoxia-associated resistance in photodynamic therapy by photo-release of NO upon NIR illumination.


2020 ◽  
Vol 56 (43) ◽  
pp. 5819-5822
Author(s):  
Jing Zheng ◽  
Yongzhuo Liu ◽  
Fengling Song ◽  
Long Jiao ◽  
Yingnan Wu ◽  
...  

In this study, a near-infrared (NIR) theranostic photosensitizer was developed based on a heptamethine aminocyanine dye with a long-lived triplet state.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


1997 ◽  
Vol 62 (26) ◽  
pp. 9387-9387 ◽  
Author(s):  
Narasimhachari Narayanan ◽  
Lucjan Strekowski ◽  
Malgorzata Lipowska ◽  
Gabor Patonay

2019 ◽  
Vol 33 (3) ◽  
pp. 188-197 ◽  
Author(s):  
Roberta Adorni ◽  
Agostino Brugnera ◽  
Alessia Gatti ◽  
Giorgio A. Tasca ◽  
Kaoru Sakatani ◽  
...  

Abstract. The aim of the study was to explore the effects of situational stress and anxiety in a group of healthy elderly, both in terms of psychophysiological correlates and cognitive performance. Eighteen participants ( Mage = 70 ± 6.3; range 60–85) were assessed for anxiety and were instructed to perform a computerized math task, under both a stressful and a control condition, while near-infrared spectroscopy (NIRS) signal and electrocardiography (ECG) were recorded. NIRS results evidenced an increased activation of right PFC during the entire procedure, even if effect sizes between left and right channels were larger during the experimental condition. The amount of right activation during the stressful condition was positively correlated with anxiety. Response times (RTs) were slower in more anxious than in less anxious individuals, both during the control and stressful conditions. Accuracy was lower in more anxious than in less anxious individuals, only during the stressful condition. Moreover, heart rate (HR) was not modulated by situational stress, nor by anxiety. Overall, the present study suggests that in healthy elderly, anxiety level has a significant impact on cerebral responses, and both on the amount of cognitive resources and the quality of performance in stressful situations.


Sign in / Sign up

Export Citation Format

Share Document