2015 ◽  
Vol 36 (2) ◽  
Author(s):  
Vikrant Sharma ◽  
Anurag Sharma ◽  
Dalvir Kaur

AbstractIn this paper, performance analysis of high-speed superdense wavelength-division-multiplexing (SDWDM) optical add–drop multiplexer (OADM) optical ring network for 6 nodes, 45 wavelengths having channel spacing of 0.2 nm on 300 km unidirectional nonlinear single-mode fiber ring of 10 Gbit/s has been reported. The performance optimization of the system by comparing different modulation formats has been reported on the basis of eye diagram and bit error rate (BER). It has been reported that CSRZ modulation format can achieve BER as better as e-24, which gives best performance. This paper also presents a study of performance degradation caused by the crosstalk and the effect of channel spacing on SWDM system.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Anurupa Lubana ◽  
Sanmukh Kaur ◽  
Yugnanda Malhotra

AbstractIn this work, we study and analyze the performance of Raman + Erbium-Ytterbium codoped fiber hybrid optical amplifier (HOA) for an ultradense wavelength division multiplexing (UD-WDM) system having 100 channels. The system has been investigated considering initial values of channel spacing and data rate of 0.1 nm (12.5 GHz) and 100 GB/s, respectively. Initially, the two important WDM system parameters—wavelength and channel spacing—have been selected and then optimization of the proposed HOA has been performed in terms of EYDFA length, pump power and Er+ concentration to achieve higher values of average gain, Q-factor and lower gain variation ratio. The optimized configuration of the HOA results in the achievement of higher value of average gain, Q-factor and gain variation ratio of 47 dB, 14 and 0.14, respectively, which confirms its viability for UD-WDM system applications.


Author(s):  
S. Semmalar ◽  
S. Malarkkan

Proposed the EDFA and EYCDFA power booster (Erbium Doped Fiber Amplifier- Erbium ytterbium co doped fiber amplifier) with quad pumping for high speed and multi wavelength services in an optical communication. The proposed EDFA and EYCDFA power booster with WDM(Wavelength division multiplexing) simulated by dual forward and Backward pumping, Dual-backward pumping, Tri-single forward and dual backward pumping and Quadsingle forward and tri-backward pumping with respect to Pump power and fiber Length. The parameters Input Optical power, Output Optical power, Forward Signal power, Backward Signal power measured and determined the speed of transmission in all types of pumping methods. From that the proposed EDFA- ans EYCDFA power booster with WDM quad pumping is the best suitable for secured high speed optical telecommunication systems. The results shown in Quad pumping Output optical power is maximum 25.2dB and optimum spectral forward Signal power is 30.5dBm and very less spectral optical backward signal power of -25.4dBm with Length 5m


Author(s):  
Anurupa Lubana ◽  
Sanmukh Kaur

In this paper, we present a novel erbium–ytterbium doped fiber amplifier (EYDFA) + Raman + EYDFA hybrid optical amplifier (HOA) for a super-dense wavelength division multiplexing (SD-WDM) system application. The performance of the 100-channel system has been investigated for an overall data rate and channel spacing of 100[Formula: see text]Gb/s and 0.4[Formula: see text]nm, respectively, over a wavelength span of 1550–1589.9[Formula: see text]nm. HOA has been optimized for Raman length, EYDFA lengths, pump powers and Er[Formula: see text] concentrations to achieve high average gain and low gain variation ratio of 40.41[Formula: see text]dB and 0.40[Formula: see text]respectively. The optimized configuration of the proposed HOA has been compared with EYDFA + Raman and Raman + EYDFA HOA configurations. The achieved high and flat gain with an acceptable output optical signal to noise ratio (OSNR) in case of EYDFA + Raman + EYDFA HOA; makes it an optimum choice for SD-WDM systems.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Meet Kumari ◽  
Reecha Sharma ◽  
Anu Sheetal

AbstractNowadays, bandwidth demand is enormously increasing, that causes the existing passive optical network (PON) to become the future optical access network. In this paper, next generation passive optical network 2 (NG-PON2) based, optical time division multiplexing passive optical network (OTDM-PON), wavelength division multiplexing passive optical network (WDM-PON) and time & wavelength division multiplexing passive optical network (TWDM-PON) systems with 20 Gbps (8 × 2.5 Gbps) downstream and 20 Gbps (8 × 2.5 Gbps) upstream capacity for eight optical network units has been proposed. The performance has been compared by varying the input power (−6 to 27 dBm) and transmission distance (10–130 km) in terms of Q-factor and optical received power in the presence of fiber noise and non-linearities. It has been observed that TWDM-PON outperforms OTDM-PON and WDM-PON for high input power and data rate (20/20 Gbps). Also, TWDM-PON shows its superiority for long-reach transmission up to 130 km, which is a cost-effective solution for future NG-PON2 applications.


2020 ◽  
Vol 10 (22) ◽  
pp. 8205
Author(s):  
Yoshiyuki Doi ◽  
Toshihide Yoshimatsu ◽  
Yasuhiko Nakanishi ◽  
Satoshi Tsunashima ◽  
Masahiro Nada ◽  
...  

This paper reviews receivers that feature low-loss multimode-output arrayed waveguide gratings (MM-AWGs) for wavelength division multiplexing (WDM) as well as hybrid integration techniques with high-speed throughput of up to 100 Gb/s and beyond. A design of optical coupling between higher-order multimode beams and a photodiode for a flat-top spectral shape is described in detail. The WDM photoreceivers were fabricated with different approaches. A 10-Gb/s photoreceiver was developed for a 1.25-Gb/s baud rate and assembled for eight-channel WDM by mechanical alignment. A receiver with 40-Gb/s throughput was built by using visual alignment for a 10-Gb/s baud rate and four-channel WDM. A 100-Gb/s receiver assembled by active alignment with a four-channel by 25-Gb/s baud rate is the basis for beyond-100 Gb/s and future multi-wavelength integrated devices toward data-centric communications and computing.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
K. Vinoth Kumar ◽  
P. Venkatesh Kumar ◽  
Ahmed Nabih Zaki Rashed ◽  
Abd El–Naser A. Mohamed ◽  
Mohamed S. Tabbour ◽  
...  

AbstractIn this paper, two models of fiber-to-the-x (FTTx) networks are provided, one of hybrid dense wavelength division multiplexing/coarse wavelength division multiplexing (DWDM/CWDM) with high subscriber’s allocated bandwidth, and the other of hybrid ultra-dense wavelength division multiplexing/coarse wavelength division multiplexing (UDWDM/CWDM) with high network capacity. The effect of the fiber chromatic dispersion on the signal quality was demonstrated. The behavior of the network with respect to the changing of the DWDM channel spacing and the relation between the channel spacing and the system bit rate was discussed.


Sign in / Sign up

Export Citation Format

Share Document