Adaptive Dynamic Surface Sliding Mode Control for Orbit Tracking of Small Celestial Body Detector with Disturbance Observer

Author(s):  
Yao Wenlong ◽  
Yang Ke ◽  
Qi Guanhua ◽  
Shao Wei ◽  
Chi Ronghu
Author(s):  
Hao Li ◽  
Lihua Dou ◽  
Zhong Su

This paper focuses on an adaptive dynamic surface based nonsingular fast terminal sliding mode control (ADS-NFTSMC) for a class of nth-order uncertain nonlinear systems in semistrict feedback form. A simple and effective controller has been obtained by introducing dynamic surface control (DSC) technique on the basis of second-order filters that the “explosion of terms” problem caused by backstepping method can be avoided. The nonsingular fast terminal sliding mode control is adopted in the last step of the controller design, and the error convergence rate is improved. An composite adaptive law is used to gain fast and accurate parameter estimation. Finally, simulation results are presented to illustrate the effectiveness of the proposed method.


2021 ◽  
pp. 002029402110211
Author(s):  
Tao Chen ◽  
Damin Cao ◽  
Jiaxin Yuan ◽  
Hui Yang

This paper proposes an observer-based adaptive neural network backstepping sliding mode controller to ensure the stability of switched fractional order strict-feedback nonlinear systems in the presence of arbitrary switchings and unmeasured states. To avoid “explosion of complexity” and obtain fractional derivatives for virtual control functions continuously, the fractional order dynamic surface control (DSC) technology is introduced into the controller. An observer is used for states estimation of the fractional order systems. The sliding mode control technology is introduced to enhance robustness. The unknown nonlinear functions and uncertain disturbances are approximated by the radial basis function neural networks (RBFNNs). The stability of system is ensured by the constructed Lyapunov functions. The fractional adaptive laws are proposed to update uncertain parameters. The proposed controller can ensure convergence of the tracking error and all the states remain bounded in the closed-loop systems. Lastly, the feasibility of the proposed control method is proved by giving two examples.


Sign in / Sign up

Export Citation Format

Share Document