Collision avoidance decision-making by altering course based on Pareto cuckoo algorithm in multi-ship encounter

Author(s):  
Xinlian Xie ◽  
Aiyuan Liu ◽  
Yukuan Wang
Author(s):  
R Fışkın ◽  
E Nasibov ◽  
M O Yardımcı

Most of the accidents are caused by human error at sea so, decision making process made by navigators should be more computerised and automated. The supported decision making can be a step forward to decrease the risk of collision. This paper, in this respect, aims to present a deterministic approach to support optimum collision avoidance trajectory. This approach involves a collision avoidance course alteration. A web-based application coded with "JavaScript" programming language on the "Processing" software platform which allows the own ship to change her course in a deterministic manner to avoid collision optimally has been introduced. Algorithm structure of the method has been formulated and organized according to the International Regulation for Preventing Collision at Sea (COLREGs). The experimental tests results have revealed that the system is practicable and feasible and considerably outperforms heuristic-based method. It is thought that the developed method can be applied in an intelligent avoidance system on board and provides contribution to ship collision avoidance process, automation of ship motion control and ship traffic engineering.


Author(s):  
Lokukaluge P. Perera

A general framework to support the navigation side of autonomous ships is discussed in this study. That consists of various maritime technologies to achieve the required level of ocean autonomy. Decision-making processes in autonomous vessels will play an important role under such ocean autonomy, therefore the same technologies should consist of adequate system intelligence. Each onboard application in autonomous vessels may require localized decision-making modules, therefore that will introduce a distributed intelligence type strategy. Hence, future ships will be agent-based systems with distributed intelligence throughout vessels. The main core of this agent should consist of deep learning type technology that has presented promising results in other transportation systems, i.e. self-driving cars. Deep learning can capture helmsman behavior, therefore that type system intelligence can be used to navigate autonomous vessels. Furthermore, an additional decision support layer should also be developed to facilitate deep learning type technology including situation awareness and collision avoidance. Ship collision avoidance is regulated by the Convention on the International Regulations for Preventing Collisions at Sea, 1972 (COLREGs) under open sea areas. Hence, a general overview of the COLREGs and its implementation challenges, i.e. regulatory failures and violations, under autonomous ships are also discussed with the possible solutions as the main contribution of this study. Furthermore, additional considerations, i.e. performance standards with the applicable limits of liability, terms, expectations and conditions, towards evaluating ship behavior as an agent-based system on collision avoidance situations are also illustrated in this study.


2020 ◽  
Vol 8 (10) ◽  
pp. 754
Author(s):  
Miao Gao ◽  
Guo-You Shi

Intelligent unmanned surface vehicle (USV) collision avoidance is a complex inference problem based on current navigation status. This requires simultaneous processing of the input sequences and generation of the response sequences. The automatic identification system (AIS) encounter data mainly include the time-series data of two AIS sets, which exhibit a one-to-one mapping relation. Herein, an encoder–decoder automatic-response neural network is designed and implemented based on the sequence-to-sequence (Seq2Seq) structure to simultaneously process the two AIS encounter trajectory sequences. Furthermore, this model is combined with the bidirectional long short-term memory recurrent neural networks (Bi-LSTM RNN) to obtain a network framework for processing the time-series data to obtain ship-collision avoidance decisions based on big data. The encoder–decoder neural networks were trained based on the AIS data obtained in 2018 from Zhoushan Port to achieve ship collision avoidance decision-making learning. The results indicated that the encoder–decoder neural networks can be used to effectively formulate the sequence of the collision avoidance decision of the USV. Thus, this study significantly contributes to the increased efficiency and safety of maritime transportation. The proposed method can potentially be applied to the USV technology and intelligent collision-avoidance systems.


2012 ◽  
Vol 19 (3) ◽  
pp. 60-64 ◽  
Author(s):  
Andrzej Felski ◽  
Krzysztof Jaskólski

ABSTRACT Common use of shipboard AIS creates conditions for the use of a new kind of dynamic data in the situation of the risk of collision. AIS position report is a source of supplementary information derived from error leveraged radar measurement. However, in view of the results of the studies there are opinions with regard to inconsistent AIS dynamic data in the process of decision-making by the officer of the watch. By taking into consideration the recordings of the studies and technical specification of AIS it can be concluded that the results of inconsistent data have significant role in collision avoidance manoeuvring.


Sign in / Sign up

Export Citation Format

Share Document