Cost-efficient QCA reversible combinational circuits based on a new reversible gate

Author(s):  
Amir Mokhtar Chabi ◽  
Arman Roohi ◽  
Ronald F. DeMara ◽  
Shaahin Angizi ◽  
Keivan Navi ◽  
...  
2018 ◽  
Vol 7 (3.12) ◽  
pp. 808
Author(s):  
Srija Alla ◽  
Bharathi S H

In the modern digital-world, power dissipation in microprocessors is becoming a significant challenge for the researchers to design an efficient reversible logic circuit. Thus, study on reversible logic design has been rapidly increased in present days for its application in Nano technology as well as in low energized VLSI design etc. In this current study, have realized a QC (i.e. quantum-cost) efficient (2i x j) reversible RAM array module with (3 x 3) New Modified Fredkin (NMF) reversible gate. Additionally, have introduced a Reversible D-Flip-Flop (RDFF) with less QC, and Reversible (i x 2i) decoder which produces the effective results in terms of QC and garbage-outputs. Finally, the study analyzed the designed architecture in terms of worst case delay.  


2020 ◽  
Vol 15 (3) ◽  
pp. 331-344 ◽  
Author(s):  
Rupali Singh ◽  
Devendra Kumar Sharma

In the era of quantum computing, Quantum Dot Cellular Automata (QCA) is a phenomenal technology which can produce low power, high speed and area efficient circuits. On the other hand, reversible logic is a promising paradigm which is used to construct low power circuits. This paper presents a design of a unique reversible gate based on QCA. This gate can facilitate the design of complex, cost efficient sequential circuits. The proposed gate is examined for various performance parameters such as realization of standard Boolean functions, cost function, energy dissipation and fault characterization. It is observed that the proposed gate exhibits superior performance as compared to the previously reported cost efficient designs in all the performance parameters. Furthermore, to evaluate the efficacy of the proposed QCA gate, reversible sequential latches are designed. The proposed structures of latches excel over the similar existing designs and have shown 50% improvement in latency, 58% improvement in effective cell area and around 70% improvement in cost function. The proposed latches are further investigated for temperature alterations to find the operating range of temperature for the circuits. The reversible QCA gate, proposed in this paper can be effectively used to design D latch, T latch, JK latch with improved performance. Hence, the proposed gate can find extensive scope in designing cost effective, low power, reversible sequential and combinational circuits.


2017 ◽  
pp. 58-76 ◽  
Author(s):  
A. Karpov

The paper considers the modern university as an economic growth driver within the University 3.0 concept (education, research, and commercialization of knowledge). It demonstrates how the University 3.0 is becoming the basis for global competitiveness of national economies and international alliances, and how its business ecosystem generates new fast-growing industries, advanced technology markets and cost-efficient administrative territories.


2019 ◽  
Vol 26 (2) ◽  
pp. 63-71
Author(s):  
Ling Leng ◽  
Ying Wang ◽  
Peixian Yang ◽  
Takashi Narihiro ◽  
Masaru Konishi Nobu ◽  
...  

Chain elongation of volatile fatty acids for medium chain fatty acids production (e.g. caproate) is an attractive approach to treat wastewater anaerobically and recover resource simultaneously. Undefined microbial consortia can be tailored to achieve chain elongation process with selective enrichment from anaerobic digestion sludge, which has advantages over pure culture approach for cost-efficient application. Whilst the metabolic pathway of the dominant caproate producer, Clostridium kluyveri, has been annotated, the role of other coexisting abundant microbiomes remained unclear. To this end, an ethanol-acetate fermentation inoculated with fresh digestion sludge at optimal conditions was conducted. Also, physiological study, thermodynamics and 16 S rRNA gene sequencing to elucidate the biological process by linking the system performance and dominant microbiomes were integrated. Results revealed a possible synergistic network in which C. kluyveri and three co-dominant species, Desulfovibrio vulgaris, Fusobacterium varium and Acetoanaerobium sticklandii coexisted. D. vulgaris and A. sticklandii (F. varium) were likely to boost the carboxylates chain elongation by stimulating ethanol oxidation and butyrate production through a syntrophic partnership with hydrogen (H2) serving as an electron messenger. This study unveils a synergistic microbial network to boost caproate production in mixed culture carboxylates chain elongation.


2019 ◽  
Author(s):  
Thibault de Lumley ◽  
François Mathieu ◽  
Didier Cornet ◽  
Dimitri Gueuning ◽  
Nicolas Van Hille

Sign in / Sign up

Export Citation Format

Share Document