scholarly journals Designing and Implementation of Efficient (2i x j) Reversible RAM-Array Module

2018 ◽  
Vol 7 (3.12) ◽  
pp. 808
Author(s):  
Srija Alla ◽  
Bharathi S H

In the modern digital-world, power dissipation in microprocessors is becoming a significant challenge for the researchers to design an efficient reversible logic circuit. Thus, study on reversible logic design has been rapidly increased in present days for its application in Nano technology as well as in low energized VLSI design etc. In this current study, have realized a QC (i.e. quantum-cost) efficient (2i x j) reversible RAM array module with (3 x 3) New Modified Fredkin (NMF) reversible gate. Additionally, have introduced a Reversible D-Flip-Flop (RDFF) with less QC, and Reversible (i x 2i) decoder which produces the effective results in terms of QC and garbage-outputs. Finally, the study analyzed the designed architecture in terms of worst case delay.  

2020 ◽  
Vol 10 (4) ◽  
pp. 534-547
Author(s):  
Chiradeep Mukherjee ◽  
Saradindu Panda ◽  
Asish K. Mukhopadhyay ◽  
Bansibadan Maji

Background: The advancement of VLSI in the application of emerging nanotechnology explores quantum-dot cellular automata (QCA) which has got wide acceptance owing to its ultra-high operating speed, extremely low power dissipation with a considerable reduction in feature size. The QCA architectures are emerging as a potential alternative to the conventional complementary metal oxide semiconductor (CMOS) technology. Experimental: Since the register unit has a crucial role in digital data transfer between the electronic devices, such study leading to the design of cost-efficient and highly reliable QCA register is expected to be a prudent area of research. A thorough survey on the existing literature shows that the generic models of Serial-in Serial Out (SISO), Serial-in-Parallel-Out (SIPO), Parallel-In- Serial-Out (PISO) and Parallel-in-Parallel-Out (PIPO) registers are inadequate in terms of design parameters like effective area, delay, O-Cost, Costα, etc. Results: This work introduces a layered T gate for the design of the D flip flop (LTD unit), which can be broadly used in SISO, SIPO, PISO, and PIPO register designs. For detection and reporting of high susceptible errors and defects at the nanoscale, the reliability and defect tolerant analysis of LTD unit are also carried out in this work. The QCA design metrics for the general register layouts using LTD unit is modeled. Conclusion: Moreover, the cost metrics for the proposed LTD layouts are thoroughly studied to check the functional complexity, fabrication difficulty and irreversible power dissipation of QCA register layouts.


2020 ◽  
Vol 17 (4) ◽  
pp. 1743-1751
Author(s):  
R. Kannan ◽  
K. Vidhya

Reversible logic is the emerging field for research in present era. The aim of this paper is to realize different types of combinational circuits like full-adder, full-subtractor, multiplexer and comparator using reversible decoder circuit with minimum quantum cost. Reversible decoder is designed using Fredkin gates with minimum Quantum cost. There are many reversible logic gates like Fredkin Gate, Feynman Gate, Double Feynman Gate, Peres Gate, Seynman Gate and many more. Reversible logic is defined as the logic in which the number output lines are equal to the number of input lines i.e., the n-input and k-output Boolean function F(X1,X2,X3, ...,Xn) (referred to as (n,k) function) is said to be reversible if and only if (i) n is equal to k and (ii) each input pattern is mapped uniquely to output pattern. The gate must run forward and backward that is the inputs can also be retrieved from outputs. When the device obeys these two conditions then the second law of thermo-dynamics guarantees that it dissipates no heat. Fan-out and Feed-back are not allowed in Logical Reversibility. Reversible Logic owns its applications in various fields which include Quantum Computing, Optical Computing, Nano-technology, Computer Graphics, low power VLSI etc. Reversible logic is gaining its own importance in recent years largely due to its property of low power consumption. The comparative study in terms of garbage outputs, Quantum Cost, numbers of gates are also presented. The Circuit has been implemented and simulated using Tannaer tools v15.0 software.


2015 ◽  
Vol 13 (05) ◽  
pp. 1550038 ◽  
Author(s):  
Pouran Houshmand ◽  
Majid Haghparast

Reversible logic has been recently considered as an interesting and important issue in designing combinational and sequential circuits. The combination of reversible logic and multi-valued logic can improve power dissipation, time and space utilization rate of designed circuits. Only few works have been reported about sequential reversible circuits and almost there are no paper exhibited about quantum ternary reversible counter. In this paper, first we designed 2-qutrit and 3-qutrit quantum reversible ternary up-counters using quantum ternary reversible T-flip-flop and quantum reversible ternary gates. Then we proposed generalized quantum reversible ternary n-qutrit up-counter. We also introduced a new approach for designing any type of n-qutrit ternary and reversible counter. According to the results, we can conclude that applying second approach quantum reversible ternary up-counter is better than the others.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 102
Author(s):  
E. V.Naga Lakshmi ◽  
Dr. N.Siva Sankara Reddy

In recent years Reversible Logic Circuits (RLC) are proved to be more efficient in terms of power dissipation. Hence, most of the researchers developed Reversible logic circuits for low power applications. RLC are designed with the help of Reversible Logic Gates (RLG).   Efficiency of the Reversible gates is measured in terms of Quantum cost, gate count, garbage output lines, logic depth and constant inputs. In this paper, measurement of power for RLG is done. Basic RLGs are designed using GDI technology and compared in terms of power dissipation. 1 bit Full subtractor is designed using EVNL gate [1] and also with TG& Fy [6] gates. The power dissipation is compared with 1 bit TR gate [5] full subtractor.  Then 2 bit, 4 bit and 8 bit subtractors are designed and compared the powers. Proposed 4 bit and 8 bit full subtractors are dissipating less power when compared to TR gate 4 bit and 8 bit subtractors.  


2020 ◽  
Vol 18 (05) ◽  
pp. 2050020 ◽  
Author(s):  
Mojtaba Noorallahzadeh ◽  
Mohammad Mosleh

As an interesting and significant research domain, reversible logic is massively utilized in technologies, including optical computing, cryptography, quantum computing, nanotechnology, and so on. The realization of quantum computing is not possible without the implementation of reversible logic, and reversible designs are presented mainly to minimize the thermal loss because of the data input bits lost in the irreversible circuit. Digital converters, as the most important logic circuits, are used to connect computing systems with different binary codes. This paper first proposes a new reversible gate called Reversible Noorallahzadeh[Formula: see text]Mosleh Gate (RNMG). Then, using the proposed RNMG gate as well as existing NMG1, NMG6, and PG gates, three different designs of reversible Binary-Coded Decimal (BCD) to EX-3 code converter are proposed. Our results indicate that the proposed BCD to EX-3 code converters are superior to previous designs in terms of quantum cost. Moreover, the proposed converters are comparable or better than previous designs in terms of gate count, constant inputs, and garbage outputs.


2020 ◽  
Vol 18 (03) ◽  
pp. 2050002
Author(s):  
Meysam Rashno ◽  
Majid Haghparast ◽  
Mohammad Mosleh

In recent years, there has been an increasing tendency towards designing circuits based on reversible logic, and has received much attention because of preventing internal power dissipation. In digital computing systems, multiplier circuits are one of the most fundamental and practical circuits used in the development of a wide range of hardware such as arithmetic circuits and Arithmetic Logic Unit (ALU). Vedic multiplier, which is based on Urdhva Tiryakbhayam (UT) algorithm, has many applications in circuit designing because of its high speed in performing multiplication compared to other multipliers. In Vedic multipliers, partial products are obtained through vertical and cross multiplication. In this paper, we propose four [Formula: see text] reversible Vedic multiplier blocks and use each one of them in its right place. Then, we propose a [Formula: see text] reversible Vedic multiplier using the four aforementioned multipliers. We prove that our design leads to better results in terms of quantum cost, number of constant inputs and number of garbage outputs, compared to the previous ones. We also expand our proposed design to [Formula: see text] multipliers which enable us to develop our proposed design in every dimension. Moreover, we propose a formula in order to calculate the quantum cost of our proposed [Formula: see text] reversible Vedic multiplier, which allows us to calculate the quantum cost even before designing the multiplier.


Author(s):  
Shaveta Thakral ◽  
Dipali Bansal

Energy loss is a big challenge in digital logic design primarily due to impending end of Moore’s Law. Increase in power dissipation not only affects portability but also overall life span of a device. Many applications cannot afford this loss. Therefore, future computing will rely on reversible logic for implementation of power efficient and compact circuits. Arithmetic and logic unit (ALU) is a fundamental component of all processors and designing it with reversible logic is tedious. The various ALU designs using reversible logic gates exist in literature but operations performed by them are limited. The main aim of this paper is to propose a new design of reversible ALU and enhance number of operations in it. This paper critically analyzes proposed ALU with existing designs and demonstrates increase in functionality with 56% reduction in gates, 17 % reduction in garbage lines, 92 % reduction in ancillary lines and 53 % reduction in quantum cost. The proposed ALU design is coded in Verilog HDL, synthesized and simulated using EDA (Electronic Design Automation) tool-Xilinx ISE design suit 14.2. RCViewer+ tool has been used to validate quantum cost of proposed design.


2020 ◽  
Vol 12 (3) ◽  
pp. 146-148
Author(s):  
Heranmoy Maity ◽  
Arindam Biswas ◽  
Arup K. Bhattacharjee ◽  
Anita Pal

Aim and Objective: This paper presents the quantum cost, garbage output, constant input and number of reversible gate optimized 2:4 decoder using 4×4 new reversible logic gate which is named as reversible decoder block or RD block. Method: The proposed block is implemented with a quantum circuit and quantum cost of the proposed RD block is 8. The proposed decoder can be designed using only one new proposed block. Results and Conclusion: The quantum cost, garbage output, constant input and gate number of the proposed 2:4 decoder is 9, 0, 2 and 1 which is better w.r.t previously reported work. The improvement % of quantum cost, garbage output, constant input and number of gates are 12.5 – 77.148 %, 100 %, 33.33 – 75 % and 0 – 85.71%.


2018 ◽  
Vol 16 (07) ◽  
pp. 1850061 ◽  
Author(s):  
Heranmoy Maity ◽  
Arindam Biswas ◽  
Anita Pal ◽  
Anup Kumar Bhattacharjee

In this paper, we have proposed the optimized BCD to Excess-3 code converter using reversible logic gate. BCD to Excess-3 code can be generated by adding “0011” to BCD number, but in the proposed work, addition is not required. The proposed reversible circuit can be designed using peres gate, Feynman gate and NOT gate optimized quantum cost, garbage output and constant input. The quantum cost (QC), garbage output and constant input of proposed reversible BCD to Excess-3 code converter are respectively 14, 1 and 1 which is better with respect to previously reported results. The improvement is, respectively 0–65%, 66.66–91.66% and 66.66–87.5%.


2020 ◽  
Vol 12 (1) ◽  
pp. 242-250
Author(s):  
B.Y. Galadima ◽  
G.S.M. Galadanci ◽  
A. Tijjani ◽  
M. Ibrahim

In recent years, reversible logic circuits have applications in the emerging field of digital signal processing, optical information processing, quantum computing and nano technology. Reversibility plays an important role when computations with minimal energy dissipation are considered. The main purpose of designing reversible logic is to decrease the number of reversible gates, garbage outputs, constant inputs, quantum cost, area, power, delay and hardware complexity of the reversible circuits. This paper reveals a comparative review on various reversible logic gates. This paper provides some reversible logic gates, which can be used in designing more complex systems having reversible circuits and can execute more complicated operations using quantum computers. Future digital technology will use reversible logic gates in order to reduce the power consumption and propagation delay as it effectively provides negligible loss of information in the circuit.   Keywords: Garbage output, Power dissipation, quantum cost, Reversible Gate, Reversible logic,


Sign in / Sign up

Export Citation Format

Share Document