Regulating the Block Loss Ratio of the Licklider Transmission Protocol

Author(s):  
Ricardo Lent
2008 ◽  
Vol 4 (3) ◽  
pp. 237-252 ◽  
Author(s):  
Ailixier Aikebaier ◽  
Tomoya Enokido ◽  
Makoto Takizawa

A wireless sensor-actuator network (WSAN) is composed of sensor modes and actuator modes which are interconnected in wireless networks. A sensor node collects information on the physical world and sends a sensed value in a wireless network. Another sensor node forwards the sensed value to deliver to an actuator node. A sensor node can deliver messages with sensed values to only nearby nodes due to weak radio. Messages are forwarded by sensor nodes to an actuator node by a type of flooding protocol. A sensor mode senses an event and sends a message with the sensed value. In addition, on receipt of a message with a sensed value from another sensor mode, a sensor node forwards the sensed value. Messages transmitted by sensor nodes might be lost due to noise and collisions. In this paper, we discuss a redundant data transmission (RT) protocol to reliably and efficiently deliver sensed values sensed by sensor nodes to an actuator node. Here, a sensor node sends a message with not only its sensed value but also sensed values received from other sensor nodes. The more number of sensed values are included in a message, the more frequently the message is lost. Each message carries so many number of sensed values that the message loss ratio is not increased. Even if a message with a sensed value v is lost in the wireless network, an actuator node can receive the sensed value v from a message sent by another sensor node. Thus, each sensed value is redundantly carried in multiple messages. The redundancy of a sensed value is in nature increased since the sensed value is broadcast. In order to reduce the redundancy of sensed value, we take a strategy that the farther sensor nodes from an actuator node forward the fewer number of sensed values. We evaluate the RT protocol in terms of loss ratio, redundancy, and delay time of a sensed value. We show that about 80% of sensed values can be delivered to an actuator node even if 95% of messages are lost due to noise and collision.


2019 ◽  
Vol 10 (9) ◽  
pp. 852-860
Author(s):  
Mahmoud Elsayed ◽  
◽  
Amr Soliman ◽  

Grey system theory is a mathematical technique used to predict data with known and unknown characteristics. The aim of our research is to forecast the future amount of technical reserves (outstanding claims reserve, loss ratio fluctuations reserve and unearned premiums reserve) up to 2029/2030. This study applies the Grey Model GM(1,1) using data obtained from the Egyptian Financial Supervisory Authority (EFSA) over the period from 2005/2006 to 2015/2016 for non-life Egyptian insurance market. We found that the predicted amounts of outstanding claims reserve and loss ratio fluctuations reserve are highly significant than the unearned premiums reserve according to the value of Posterior Error Ratio (PER).


2014 ◽  
Vol E97.B (12) ◽  
pp. 2784-2789
Author(s):  
Chunguo LI ◽  
Yongping ZHANG ◽  
John M. CIOFFI ◽  
Luxi YANG

Author(s):  
Margarita Naslednikova ◽  
Alexandr Zamalov

The article discusses methods for calculating the loss ratio of insurance companies, including compulsory medical insurance, which is the basis for building a health system; su’ciency of formed reserves, which are created in connection with the possibility of losses. Variants of interpretation of calculated indicators into a qualitative characteristic of the insurance company. A comparative analysis of the calculation of indicators of loss-making of insurance companies and the adequacy of the formation of reserves of insurance companies according to Russian accounting standards and in accordance with the requirements of international financial reporting standards.


2019 ◽  
Vol 65 (1) ◽  
Author(s):  
Boshi Zhao ◽  
Zhiming Yu ◽  
Yang Zhang ◽  
Chusheng Qi

AbstractBlue staining on rubberwood (Hevea brasiliensis) is a common kind of defect. There currently exists much research focused on the prevention and control of blue staining. However, little research has been concentrated on the utilization of blue staining for green dyeing. The research conveyed in this paper primarily used Lasiodiplodia theobromae to dye rubberwood, and used scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), and fourier transform infrared spectrometer (FTIR) to analyze the commission internationale eclairage (CIE) L*a*b* value of color, the contact angle, the pH value, 24-h water absorption, mass loss ratio, and compressive strength in increments between 5 and 40 days. The results found that the color of rubberwood became darker and more uniform, and that the surface dyed with fungi can reach a super-hydrophobic state. With the increase of time, the pH value of rubberwood changed from acidic to alkaline. Furthermore, hyphae entered the wood mainly through vessels for their large pore diameter, and reduced water absorption. Mass loss ratio increased gradually between 5 and 40 days. The research in this paper concludes that the microorganism was an effective method of wood dyeing, and lays a foundation for further research.


Sign in / Sign up

Export Citation Format

Share Document