Haptic texture generation - a heuristic method for virtual body structures

Author(s):  
E. Acosta ◽  
B. Temkin ◽  
J.A. Griswold ◽  
S.A. Deeb ◽  
R.S. Haluck
Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4330 ◽  
Author(s):  
Xinqi Liu ◽  
Jituo Li ◽  
Guodong Lu

High-quality 3D reconstruction results are very important in many application fields. However, current texture generation methods based on point sampling and fusion often produce blur. To solve this problem, we propose a new volumetric fusion strategy which can be embedded in the current online and offline reconstruction framework as a basic module to achieve excellent geometry and texture effects. The improvement comes from two aspects. Firstly, we establish an adaptive weight field to evaluate and adjust the reliability of data from RGB-D images by using a probabilistic and heuristic method. By using this adaptive weight field to guide the voxel fusion process, we can effectively preserve the local texture structure of the mesh, avoid wrong texture problems and suppress the influence of outlier noise on the geometric surface. Secondly, we use a new texture fusion strategy that combines replacement, integration, and fixedness operations to fuse and update voxel texture to reduce blur. Experimental results demonstrate that compared with the classical KinectFusion, our approach can significantly improve the accuracy in geometry and texture clarity, and can achieve equivalent texture reconstruction effects in real-time as the offline reconstruction methods such as intrinsic3d, even better in relief scenes.


2017 ◽  
Vol 10 (5) ◽  
pp. 371
Author(s):  
Arakil Chentoufi ◽  
Abdelhakim El Fatmi ◽  
Molay Ali Bekri ◽  
Said Benhlima ◽  
Mohamed Sabbane

2021 ◽  
Vol 11 (6) ◽  
pp. 2511
Author(s):  
Julian Hatwell ◽  
Mohamed Medhat Gaber ◽  
R. Muhammad Atif Azad

This research presents Gradient Boosted Tree High Importance Path Snippets (gbt-HIPS), a novel, heuristic method for explaining gradient boosted tree (GBT) classification models by extracting a single classification rule (CR) from the ensemble of decision trees that make up the GBT model. This CR contains the most statistically important boundary values of the input space as antecedent terms. The CR represents a hyper-rectangle of the input space inside which the GBT model is, very reliably, classifying all instances with the same class label as the explanandum instance. In a benchmark test using nine data sets and five competing state-of-the-art methods, gbt-HIPS offered the best trade-off between coverage (0.16–0.75) and precision (0.85–0.98). Unlike competing methods, gbt-HIPS is also demonstrably guarded against under- and over-fitting. A further distinguishing feature of our method is that, unlike much prior work, our explanations also provide counterfactual detail in accordance with widely accepted recommendations for what makes a good explanation.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3936
Author(s):  
Yannis Spyridis ◽  
Thomas Lagkas ◽  
Panagiotis Sarigiannidis ◽  
Vasileios Argyriou ◽  
Antonios Sarigiannidis ◽  
...  

Unmanned aerial vehicles (UAVs) in the role of flying anchor nodes have been proposed to assist the localisation of terrestrial Internet of Things (IoT) sensors and provide relay services in the context of the upcoming 6G networks. This paper considered the objective of tracing a mobile IoT device of unknown location, using a group of UAVs that were equipped with received signal strength indicator (RSSI) sensors. The UAVs employed measurements of the target’s radio frequency (RF) signal power to approach the target as quickly as possible. A deep learning model performed clustering in the UAV network at regular intervals, based on a graph convolutional network (GCN) architecture, which utilised information about the RSSI and the UAV positions. The number of clusters was determined dynamically at each instant using a heuristic method, and the partitions were determined by optimising an RSSI loss function. The proposed algorithm retained the clusters that approached the RF source more effectively, removing the rest of the UAVs, which returned to the base. Simulation experiments demonstrated the improvement of this method compared to a previous deterministic approach, in terms of the time required to reach the target and the total distance covered by the UAVs.


2021 ◽  
Vol 1756 (1) ◽  
pp. 012005
Author(s):  
Bowen Yang ◽  
Lei Yuan ◽  
Jin Yan ◽  
Zhiming Ding ◽  
Zhi Cai ◽  
...  

Author(s):  
Nannan Li ◽  
Yu Pan ◽  
Yaran Chen ◽  
Zixiang Ding ◽  
Dongbin Zhao ◽  
...  

AbstractRecently, tensor ring networks (TRNs) have been applied in deep networks, achieving remarkable successes in compression ratio and accuracy. Although highly related to the performance of TRNs, rank selection is seldom studied in previous works and usually set to equal in experiments. Meanwhile, there is not any heuristic method to choose the rank, and an enumerating way to find appropriate rank is extremely time-consuming. Interestingly, we discover that part of the rank elements is sensitive and usually aggregate in a narrow region, namely an interest region. Therefore, based on the above phenomenon, we propose a novel progressive genetic algorithm named progressively searching tensor ring network search (PSTRN), which has the ability to find optimal rank precisely and efficiently. Through the evolutionary phase and progressive phase, PSTRN can converge to the interest region quickly and harvest good performance. Experimental results show that PSTRN can significantly reduce the complexity of seeking rank, compared with the enumerating method. Furthermore, our method is validated on public benchmarks like MNIST, CIFAR10/100, UCF11 and HMDB51, achieving the state-of-the-art performance.


Sign in / Sign up

Export Citation Format

Share Document