scholarly journals Heuristic rank selection with progressively searching tensor ring network

Author(s):  
Nannan Li ◽  
Yu Pan ◽  
Yaran Chen ◽  
Zixiang Ding ◽  
Dongbin Zhao ◽  
...  

AbstractRecently, tensor ring networks (TRNs) have been applied in deep networks, achieving remarkable successes in compression ratio and accuracy. Although highly related to the performance of TRNs, rank selection is seldom studied in previous works and usually set to equal in experiments. Meanwhile, there is not any heuristic method to choose the rank, and an enumerating way to find appropriate rank is extremely time-consuming. Interestingly, we discover that part of the rank elements is sensitive and usually aggregate in a narrow region, namely an interest region. Therefore, based on the above phenomenon, we propose a novel progressive genetic algorithm named progressively searching tensor ring network search (PSTRN), which has the ability to find optimal rank precisely and efficiently. Through the evolutionary phase and progressive phase, PSTRN can converge to the interest region quickly and harvest good performance. Experimental results show that PSTRN can significantly reduce the complexity of seeking rank, compared with the enumerating method. Furthermore, our method is validated on public benchmarks like MNIST, CIFAR10/100, UCF11 and HMDB51, achieving the state-of-the-art performance.

2021 ◽  
Vol 11 (6) ◽  
pp. 2511
Author(s):  
Julian Hatwell ◽  
Mohamed Medhat Gaber ◽  
R. Muhammad Atif Azad

This research presents Gradient Boosted Tree High Importance Path Snippets (gbt-HIPS), a novel, heuristic method for explaining gradient boosted tree (GBT) classification models by extracting a single classification rule (CR) from the ensemble of decision trees that make up the GBT model. This CR contains the most statistically important boundary values of the input space as antecedent terms. The CR represents a hyper-rectangle of the input space inside which the GBT model is, very reliably, classifying all instances with the same class label as the explanandum instance. In a benchmark test using nine data sets and five competing state-of-the-art methods, gbt-HIPS offered the best trade-off between coverage (0.16–0.75) and precision (0.85–0.98). Unlike competing methods, gbt-HIPS is also demonstrably guarded against under- and over-fitting. A further distinguishing feature of our method is that, unlike much prior work, our explanations also provide counterfactual detail in accordance with widely accepted recommendations for what makes a good explanation.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 344
Author(s):  
Alejandro Humberto García Ruiz ◽  
Salvador Ibarra Martínez ◽  
José Antonio Castán Rocha ◽  
Jesús David Terán Villanueva ◽  
Julio Laria Menchaca ◽  
...  

Electricity is one of the most important resources for the growth and sustainability of the population. This paper assesses the energy consumption and user satisfaction of a simulated air conditioning system controlled with two different optimization algorithms. The algorithms are a genetic algorithm (GA), implemented from the state of the art, and a non-dominated sorting genetic algorithm II (NSGA II) proposed in this paper; these algorithms control an air conditioning system considering user preferences. It is worth noting that we made several modifications to the objective function’s definition to make it more robust. The energy-saving optimization is essential to reduce CO2 emissions and economic costs; on the other hand, it is desirable for the user to feel comfortable, yet it will entail a higher energy consumption. Thus, we integrate user preferences with energy-saving on a single weighted function and a Pareto bi-objective problem to increase user satisfaction and decrease electrical energy consumption. To assess the experimentation, we constructed a simulator by training a backpropagation neural network with real data from a laboratory’s air conditioning system. According to the results, we conclude that NSGA II provides better results than the state of the art (GA) regarding user preferences and energy-saving.


Author(s):  
Stephen S. Altus ◽  
Ilan M. Kroo ◽  
Peter J. Gage

Abstract Complex engineering studies typically involve hundreds of analysis routines and thousands of variables. The sequence of operations used to evaluate a design strongly affects the speed of each analysis cycle. This influence is particularly important when numerical optimization is used, because convergence generally requires many iterations. Moreover, it is common for disciplinary teams to work simultaneously on different aspects of a complex design. This practice requires decomposition of the analysis into subtasks, and the efficiency of the design process critically depends on the quality of the decomposition achieved. This paper describes the development of software to plan multidisciplinary design studies. A genetic algorithm is used, both to arrange analysis subroutines for efficient execution, and to decompose the task into subproblems. The new planning tool is compared with an existing heuristic method. It produces superior results when the same merit function is used, and it can readily address a wider range of planning objectives.


2021 ◽  
Vol 10 (2) ◽  
pp. 42-60
Author(s):  
Khadidja Chettah ◽  
Amer Draa

Automatic text summarization has recently become a key instrument for reducing the huge quantity of textual data. In this paper, the authors propose a quantum-inspired genetic algorithm (QGA) for extractive single-document summarization. The QGA is used inside a totally automated system as an optimizer to search for the best combination of sentences to be put in the final summary. The presented approach is compared with 11 reference methods including supervised and unsupervised summarization techniques. They have evaluated the performances of the proposed approach on the DUC 2001 and DUC 2002 datasets using the ROUGE-1 and ROUGE-2 evaluation metrics. The obtained results show that the proposal can compete with other state-of-the-art methods. It is ranked first out of 12, outperforming all other algorithms.


Author(s):  
Amin Rezaeipanah ◽  
Musa Mojarad

This paper presents a new, bi-criteria mixed-integer programming model for scheduling cells and pieces within each cell in a manufacturing cellular system. The objective of this model is to minimize the makespan and inter-cell movements simultaneously, while considering sequence-dependent cell setup times. In the CMS design and planning, three main steps must be considered, namely cell formation (i.e., piece families and machine grouping), inter and intra-cell layouts, and scheduling issue. Due to the fact that the Cellular Manufacturing Systems (CMS) problem is NP-Hard, a Genetic Algorithm (GA) as an efficient meta-heuristic method is proposed to solve such a hard problem. Finally, a number of test problems are solved to show the efficiency of the proposed GA and the related computational results are compared with the results obtained by the use of an optimization tool.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1097
Author(s):  
Tomás P. Corrêa ◽  
Luis Almeida

Ethernet is a popular networking technology in factory automation and industrial embedded systems, frequently using a ring topology for improved fault-tolerance. As many applications demand ever shorter cycle times and a higher number of nodes, the popular ring endure to remain as a valid topology. In this work, we discuss the factors that determine the ring network delay and show how they affect the network cycle time. Since increasing the link capacity has limited reach, we explore a time-triggered protocol that brings the nodes forwarding delay near to the physical layer delay. Additionally, we propose hardware accelerators based on FPGA technology that minimise the packet reception delay from physical reception to delivery to an application handler, preserving Ethernet layers and being compatible with its standard. This paper explains the accelerators concept and implementation, presents measurements using standard Media Access Control implementations, and shows the solution effectiveness with experimental results. We achieved a delay, from physical reception to the triggering of a user-level handler, of 1.1 µs independent of the packet length.


Author(s):  
Al-khafaji Amen

<span lang="EN-US">Maintaining population diversity is the most notable challenge in solving dynamic optimization problems (DOPs). Therefore, the objective of an efficient dynamic optimization algorithm is to track the optimum in these uncertain environments, and to locate the best solution. In this work, we propose a framework that is based on multi operators embedded in genetic algorithms (GA) and these operators are heuristic and arithmetic crossovers operators. The rationale behind this is to address the convergence problem and to maintain the diversity. The performance of the proposed framework is tested on the well-known dynamic optimization functions i.e., OneMax, Plateau, Royal Road and Deceptive. Empirical results show the superiority of the proposed algorithm when compared to state-of-the-art algorithms from the literature.</span>


Sign in / Sign up

Export Citation Format

Share Document