scholarly journals A Framework for Morphological Feature Extraction of Organs from MR Images for Detection and Classification of Abnormalities

Author(s):  
Barbara Villarini ◽  
Hykoush Asaturyan ◽  
E. Louise Thomas ◽  
Rhys Mould ◽  
Jimmy D. Bell
Author(s):  
Namita Aggarwal ◽  
Bharti Rana ◽  
R. K. Agrawal

Alzheimer’s disease is the most common form of dementia occurring in the elderly persons. Its early diagnosis may help in providing proper treatment. To date, there is no appropriate technique available to automatically classify it using MR brain images. In this work, first-and-second-order-statistics (FSOS) was employed for classification of Alzheimer’s from T2 trans-axial brain MR images. Although FSOS is a simple and well known feature extraction technique, it is not yet explored for Alzheimer’s classification. Performance of FSOS was compared with the state-of-the-art feature extraction techniques. Five commonly used classifiers were employed to build decision models. The performance of the models was evaluated in terms of sensitivity, specificity, accuracy, F-measure, training, and testing time. These models were built with varying number of training samples. Results showed that FSOS outperforms all the other existing feature extraction techniques in terms of all the considered performance measures. This was also validated by a statistical test. Interestingly, it was found that FSOS gives high performance irrespective of the choice of classifier and it works well even on small available number of samples, which is usually desired for all real time problems.Keyword: Discrete Wavelet Transform, Feature Extraction, First and Second Order Statistics, Gabor Transform, Magnetic Resonance Imaging, Slantlet Transform


2019 ◽  
Vol 16 (2) ◽  
pp. 341-350
Author(s):  
Artur Bernardo Silva Reis ◽  
Aristófanes Corrêa Silva ◽  
Anselmo Cardoso de Paiva ◽  
Marcelo Gattass

Prostate cancer is the second most prevalent type of cancer in the male population worldwide. Prostate imaging tests have adopted for the prevention, diagnosis, and treatment. It is known that early detection increases the chances of an effective treatment, improving the prognosis of the disease. This paper proposes an automatic methodology for prostate lesions detection. It consists of the following steps: Extracting candidates for lesions with Wolff algorithm; feature extraction using the Ising model measures and finally the uses support vector machine in the classification of a lesion or healthy tissue. The methodology was validated using a set of 28 exams containing the lesion markings and obtained a sensitivity of 95.92%, specificity of 93.89% and accuracy of 94.16%. These are promising since they were more significant than other methods compared.


Author(s):  
Sheifali Gupta ◽  
Prabhpreet Walia ◽  
Chaitanya Singla ◽  
Shivani Dhankar ◽  
Tanvi Mishra ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Alexander Hammer ◽  
Matthieu Scherpf ◽  
Hannes Ernst ◽  
Jonas Weiss ◽  
Daniel Schwensow ◽  
...  

Author(s):  
Bichitra Panda ◽  
Chandra Sekhar Panda

Brain tumor is one of the leading disease in the world. So automated identification and classification of tumors are important for diagnosis. Magnetic resonance imaging (MRI)is widely used modality for imaging brain. Brain tumor classification refers to classify the brain MR images as normal or abnormal, benign or malignant, low grade or high grade or types. This paper reviews various techniques used for the classification of brain tumors from MR images. Brain tumor classification can be divided into three phases as preprocessing, feature extraction and classification. As segmentation is not mandatory for classification, hence resides in the first phase. The feature extraction phase also contains feature reduction. DWT is efficient for both preprocessing and feature extraction. Texture analysis based on GLCM gives better features for classification where PCA reduces the feature vector maintaining the accuracy of classification of brain MRI. Shape features are important where segmentation has already been performed. The use of SVM along with appropriate kernel techniques can help in classifying the brain tumors from MRI. High accuracy has been achieved to classify brain MRI as normal or abnormal, benign or malignant and low grade or high grade. But classifying the tumors into more particular types is more challenging.


Sign in / Sign up

Export Citation Format

Share Document