Sliding mode disturbance observer-based the port-controlled Hamiltonian control for a four-tank liquid level system subject to external disturbances

Author(s):  
Xiangxiang Meng ◽  
Haisheng Yu ◽  
Tao Xu ◽  
Herong Wu
2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Xiangxiang Meng ◽  
Haisheng Yu ◽  
Herong Wu ◽  
Tao Xu

A novel method of disturbance observer-based integral backstepping control is proposed for the two-tank liquid level system with external disturbances. The problem of external disturbances can be settled in this paper. Firstly, the mathematical model of the two-tank liquid level system is established based on fluid mechanics and principle of mass conservation. Secondly, an integral backstepping control strategy is designed in order to ensure liquid level tracking performance by making the tracking errors converge to zero in finite time. Thirdly, a disturbance observer is designed for the two-tank liquid level system with external disturbances. Finally, the validity of the proposed method is verified by simulation and experiment. By doing so, the simulation and experimental results prove that the scheme of disturbance observer-based integral backstepping control strategy can suppress external disturbances more effective than the disturbance observer-based sliding mode control method and has better dynamic and steady performance of the two-tank liquid level system.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2242
Author(s):  
Pengyu Qiao ◽  
Jun Yang ◽  
Chen Dai ◽  
Xi Xiao

The nonlinearities of piezoelectric actuators and external disturbances of the piezoelectric nanopositioning stage impose great, undesirable influences on the positioning accuracy of nanopositioning stage systems. This paper considers nonlinearities and external disturbances as a lumped disturbance and designs a composite control strategy for the piezoelectric nanopositioning stage to realize ultra-high precision motion control. The proposed strategy contains a composite disturbance observer and a continuous terminal sliding mode controller. The composite disturbance observer can estimate both periodic and aperiodic disturbances so that the composite control strategy can deal with the disturbances with high accuracy. Meanwhile, the continuous terminal sliding mode control is employed to eliminate the chattering phenomenon and speed up the convergence rate. The simulation and experiment results show that the composite control strategy achieves accurate estimation of different forms of disturbances and excellent tracking performance.


Author(s):  
Syed Muhammad Amrr ◽  
M Nabi ◽  
Pyare Mohan Tiwari

This paper investigates the application of an integral sliding mode control with a robust nonlinear disturbance observer to obtain an anti-unwinding spacecraft attitude tracking response with robustness against external disturbances, inertia matrix uncertainties, and actuator faults. In the controller design, external disturbances, uncertainties, and actuator faults are lumped together and estimated by the robust nonlinear disturbance observer. The proposed robust nonlinear disturbance observer guarantees the convergence of estimated lumped disturbance error to origin in finite time. The estimated disturbance is then used in the controller as a feed-forward compensator. Further, an adaptive law is also incorporated in the proposed controller to ensure additional robustness. The stability of the overall system and anti-unwinding characteristic are proved using the Lyapunov stability theory. Finally, numerical simulation analysis is performed in the presence of all the sources of lumped disturbances. It is observed that the proposed control strategy is ensuring higher accuracy, good steady-state precision, and eliminates the unwinding phenomenon.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Jinghui Zhang ◽  
Guoqiang Zeng ◽  
Shifeng Zhang

This paper presents a novel nonlinear sliding mode control scheme that combines on-line model modification, a nonlinear sliding mode controller, and a disturbance observer to solve the essential problems in spacecraft electromagnetic docking control, such as model uncertainties, unknown external disturbances, and inherent strong nonlinearity and coupling. An improved far-field model of electromagnetic force which is much more accurate than the widely used far-field model is proposed to enable the model parameters to be on-line self-adjusting. Then, the relationship between magnetic moment allocation and energy consumption is derived, and the optimal direction of the magnetic moment vector is obtained. Based on the proposed improved far-field model and the research results of magnetic moment allocation law, a fast-nonsingular terminal mode controller driven by a disturbance observer is designed in the presence of model uncertainties and external disturbances. The proposed control method is guaranteed to be chattering-free and to possess superior properties such as finite-time convergence, high-precision tracking, and strong robustness. Two simulation scenarios are conducted to illustrate the necessity of modifying the far-field model and the effectiveness of the proposed control scheme. The simulation results indicate the realization of electromagnetic soft docking and validate the merits of the proposed control scheme. In the end of this paper, some conclusions are drawn.


Sign in / Sign up

Export Citation Format

Share Document