Fixed point results based on set $P_{h,e}$ and application in nonlinear fractional differential equation

Author(s):  
Gaofeng Xing ◽  
Lingling Zhang ◽  
Xin Zhao
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jun-Rui Yue ◽  
Jian-Ping Sun ◽  
Shuqin Zhang

We consider the following boundary value problem of nonlinear fractional differential equation:(CD0+αu)(t)=f(t,u(t)),  t∈[0,1],  u(0)=0,   u′(0)+u′′(0)=0,  u′(1)+u′′(1)=0, whereα∈(2,3]is a real number, CD0+αdenotes the standard Caputo fractional derivative, andf:[0,1]×[0,+∞)→[0,+∞)is continuous. By using the well-known Guo-Krasnoselskii fixed point theorem, we obtain the existence of at least one positive solution for the above problem.


2019 ◽  
Vol 13 (05) ◽  
pp. 2050089 ◽  
Author(s):  
S. Nageswara Rao ◽  
Meshari Alesemi

In this paper, we establish sufficient conditions for the existence of positive solutions for a system of nonlinear fractional [Formula: see text]-Laplacian boundary value problems under different combinations of superlinearity and sublinearity of the nonlinearities via the Guo–Krasnosel’skii fixed point theorem. Moreover, an example is given to illustrate our results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ya-ling Li ◽  
Shi-you Lin

We study the following nonlinear fractional differential equation involving thep-Laplacian operatorDβφpDαut=ft,ut,1<t<e,u1=u′1=u′e=0,Dαu1=Dαue=0, where the continuous functionf:1,e×0,+∞→[0,+∞),2<α≤3,1<β≤2.Dαdenotes the standard Hadamard fractional derivative of the orderα, the constantp>1, and thep-Laplacian operatorφps=sp-2s. We show some results about the existence and the uniqueness of the positive solution by using fixed point theorems and the properties of Green's function and thep-Laplacian operator.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 832
Author(s):  
Tanzeela Kanwal ◽  
Azhar Hussain ◽  
Hamid Baghani ◽  
Manuel de la Sen

We present the notion of orthogonal F -metric spaces and prove some fixed and periodic point theorems for orthogonal ⊥ Ω -contraction. We give a nontrivial example to prove the validity of our result. Finally, as application, we prove the existence and uniqueness of the solution of a nonlinear fractional differential equation.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
M. Gaber ◽  
M. G. Brikaa

This paper studies a coupled system of nonlinear fractional differential equation with four-point boundary conditions. Applying the Schauder fixed-point theorem, an existence result is proved for the following system: , , , , , , , , where satisfy certain conditions.


Author(s):  
Jinhua Wang ◽  
Hongjun Xiang ◽  
ZhiGang Liu

We consider the existence and multiplicity of concave positive solutions for boundary value problem of nonlinear fractional differential equation withp-Laplacian operatorD0+γ(ϕp(D0+αu(t)))+f(t,u(t),D0+ρu(t))=0,0<t<1,u(0)=u′(1)=0,u′′(0)=0,D0+αu(t)|t=0=0, where0<γ<1,2<α<3,0<ρ⩽1,D0+αdenotes the Caputo derivative, andf:[0,1]×[0,+∞)×R→[0,+∞)is continuous function,ϕp(s)=|s|p-2s,p>1,  (ϕp)-1=ϕq,  1/p+1/q=1. By using fixed point theorem, the results for existence and multiplicity of concave positive solutions to the above boundary value problem are obtained. Finally, an example is given to show the effectiveness of our works.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 686 ◽  
Author(s):  
Thabet Abdeljawad ◽  
Ravi P Agarwal ◽  
Erdal Karapınar ◽  
P Sumati Kumari

The present paper aims to define three new notions: Θ e -contraction, a Hardy–Rogers-type Θ -contraction, and an interpolative Θ -contraction in the framework of extended b-metric space. Further, some fixed point results via these new notions and the study endeavors toward a feasible solution would be suggested for nonlinear Volterra–Fredholm integral equations of certain types, as well as a solution to a nonlinear fractional differential equation of the Caputo type by using the obtained results. It also considers a numerical example to indicate the effectiveness of this new technique.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Jamilu Abubakar ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet

Abstract This study investigates the solutions of an impulsive fractional differential equation incorporated with a pantograph. This work extends and improves some results of the impulsive fractional differential equation. A differential equation of an impulsive fractional pantograph with a more general anti-periodic boundary condition is proposed. By employing the well-known fixed point theorems of Banach and Krasnoselskii, the existence and uniqueness of the solution of the proposed problem are established. Furthermore, two examples are presented to support our theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document