Speed Control Strategy of PMSM Based on Improved Auto Disturbance Rejection Control

Author(s):  
Yueling Zhao ◽  
Hongyu Li ◽  
Xuhong Gao ◽  
Dong Guo
Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 760
Author(s):  
Fang Liu ◽  
Haotian Li ◽  
Ling Liu ◽  
Runmin Zou ◽  
Kangzhi Liu

In this paper, the speed tracking problem of the interior permanent magnet synchronous motor (IPMSM) of an electric vehicle is studied. A cascade speed control strategy based on active disturbance rejection control (ADRC) and a current control strategy based on improved duty cycle finite control set model predictive control (FCSMPC) are proposed, both of which can reduce torque ripple and current ripple as well as the computational burden. First of all, in the linearization process, some nonlinear terms are added into the control signal for voltage compensation, which can reduce the order of the prediction model. Then, the dq-axis currents are selected by maximum torque per ampere (MTPA). Six virtual vectors are employed to FCSMPC, and a novel way to calculate the duty cycle is adopted. Finally, the simulation results show the validity and superiority of the proposed method.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2781
Author(s):  
Yue Zhou ◽  
Hussein Obeid ◽  
Salah Laghrouche ◽  
Mickael Hilairet ◽  
Abdesslem Djerdir

In order to improve the durability and economy of a hybrid power system composed of a battery and supercapacitors, a control strategy that can reduce fluctuations of the battery current is regarded as a significant tool to deal with this issue. This paper puts forwards a disturbance rejection control strategy for a hybrid power system taking into account the degradation of the battery. First, the degradation estimation of the battery is done by the model-driven method based on the degradation model and Cubature Kalman Filter (CKF). Considering the transient and sinusoidal disturbance from the load in such a hybrid system, it is indispensable to smooth the behavior of the battery current in order to ensure the lifespan of the battery. Moreover, the constraints for the hybrid system should be considered for safety purposes. In order to deal with these demands, a cascaded voltage control loop based on a super twisting controller and proportional integral controller with an anti-windup scheme is designed for regulating the DC bus voltage in an inner voltage loop and supercapacitors’ voltage in an outer voltage loop, respectively. The specific feature of the proposed control method is that it operates like a low-pass filter so as to reduce the oscillations on the DC bus.


2020 ◽  
Vol 42 (12) ◽  
pp. 2221-2233 ◽  
Author(s):  
Yun Cheng ◽  
Zengqiang Chen ◽  
Mingwei Sun ◽  
Qinglin Sun

Although the heat integrated distillation is an energy-efficient and environment-friendly separation technology, it has not been commercialized. One of the reasons is that the nonlinear dynamics and the interactions between various control loops have limited the performance of the traditional control strategy. To achieve a high-purity product concentration, a dynamic decoupling control strategy based on active disturbance rejection control (ADRC) is proposed. The effects of interactions, uncertainties and external disturbances can be estimated and rejected by using extended state observer. Considering the constraints on manipulated variables, an optimized ADRC is designed for the first-order system. Moreover, a concentration observer based on a nonlinear wave model is formulated to reduce the number of sensors. In the simulation research, the related internal model control (IMC), multi-loop ADRC and model predictive control (MPC) are compared with the proposed control scheme. The simulation results demonstrate the advantages of the proposed control scheme on tight control, decoupling performance and disturbance rejection for the high-purity heat integrated distillation column.


2020 ◽  
Vol 42 (12) ◽  
pp. 2198-2205
Author(s):  
Yong Zhang ◽  
Zengqiang Chen ◽  
Mingwei Sun

This paper proposes a dynamic surface active disturbance rejection control (ADRC) strategy to deal with trajectory tracking problems for a quadrotor unmanned aerial vehicle (UAV). Compared with backstepping control, the design process of the dynamic controller is more simple; the dynamic surface control introduces a first-order filter to obtain the derivative of the virtual control, the purpose is to avoid the virtual control derivation, and to simplify the control law of the whole system. The ADRC technique is mainly used to reject the disturbances and stabilize the quadrotor UAV system. Parametric uncertainties and external disturbances have been considered for the whole system, the control strategy that proposed in this paper has been simulated by MATLAB and the advantages and effectiveness of the control strategy that proposed in the paper are shown by comparing with the classical ADRC.


Sign in / Sign up

Export Citation Format

Share Document