Charge of LiPo Batteries via Switched Saturated Super-Twisting Algorithm

Author(s):  
Jose Antonio Ortega Perez ◽  
Rosalba Galvan Guerra ◽  
Yair Lozano Hernandez ◽  
Juan Eduardo Velazquez Velazquez ◽  
Luis Armando Villamar Martinez
Keyword(s):  
Author(s):  
Bin Zhao ◽  
Zhenxin Feng ◽  
Jianguo Guo

The problem of the integrated guidance and control (IGC) design for strap-down missile with the field-of-view (FOV) constraint is solved by using the integral barrier Lyapunov function (iBLF) and the sliding mode control theory. Firstly, the nonlinear and uncertainty state equation with non-strict feedback form for IGC design is derived by using the strap-down decoupling strategy. Secondly, a novel adaptive finite time disturbance observer is proposed to estimate the uncertainties based on an improved adaptive gain super twisting algorithm. Thirdly, the special time-varying sliding variable is designed and the iBLF is employed to handle the problem of FOV constraint. Theoretical derivation and simulation show that the IGC system is globally uniformly ultimately bounded and the FOV angle constraint is also guaranteed not only during the reaching phase but also during the sliding mode phase.


Author(s):  
Ayyarao S. L. V. Tummala

AbstractThis paper presents a novel composite wide area control of a DFIG wind energy system which combines the Robust Exact Differentiator (RED) and Discontinuous Integral (DI) control to damp out inter-area oscillations. RED generates the real-time differentiation of a relative speed signal in a noisy environment while DI control, an extension to a twisting algorithm and PID control, develops a continuous control signal and hence reduces chattering. The proposed control is robust to disturbances and can enhance the overall stability of the system. The proposed composite sliding mode control is evaluated using a modified benchmark two-area power system model with wind energy integration. Simulation results under various operating scenarios show the efficacy of the proposed approach.


2020 ◽  
Vol 53 (2) ◽  
pp. 6219-6224
Author(s):  
Jair L. Azevedo Filho ◽  
Eduardo V.L. Nunes
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6041
Author(s):  
Fredy A. Valenzuela ◽  
Reymundo Ramírez ◽  
Fermín Martínez ◽  
Onofre A. Morfín ◽  
Carlos E. Castañeda

A DC motor velocity control in feedback systems usually requires a velocity sensor, which increases the controller cost. Additionally, the velocity sensor used in industrial applications presents several disadvantages such as maintenance requirements and signal conditioning. In this work, we propose a robust velocity control scheme applied to a DC motor based on estimation strategies using a sliding-mode observer. This means that measurements with mechanical sensors are not required in the controller design. The proposed observer estimates the rotational velocity and load torque of the motor. The controller design applies the exact-linearization technique combined with the super-twisting algorithm to achieve robust performance in the closed-loop system. The controller validation was carried out by experimental tests using a workbench, which is composed of a control and data acquisition Digital Signal Proccessor board, a DC-DC electronic converter, an interface board for signals conditioning, and a DC electric generator connected to an adjustable resistive load. The simulation and experimental results show a significant performance of the proposed control scheme. During tests, the accuracy, robustness, and speed response on the controller were evaluated and the experimental results were compared with a classic proportional-integral controller, which uses a conventional encoder.


2015 ◽  
Vol 60 (10) ◽  
pp. 2803-2807 ◽  
Author(s):  
Yaniv Dvir ◽  
Arie Levant
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document