The role of Nano-sized Alumina tri-hydrate and Fumed Silica on the Erosion of Silicone Rubber under DC Voltage

Author(s):  
Alhaytham Alqudsi ◽  
Refat Atef Ghunem ◽  
Eric David
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3449
Author(s):  
Alhaytham Y. Alqudsi ◽  
Refat A. Ghunem ◽  
Eric David

This paper investigates the effect of ground and fumed silica fillers on suppressing DC erosion in silicone rubber. Fumed silica and ground silica fillers are incorporated in silicone rubber at different loading levels and comparatively analyzed in this study. Outcomes of the +DC inclined plane tracking erosion test indicate a better erosion performance for the fumed silica filled composite despite having a lower thermal conductivity compared to the ground silica composite. Results of the simultaneous thermogravimetric and thermal differential analyses are correlated with inclined plane tracking erosion test outcomes suggesting that fumed silica suppresses depolymerization and promotes radical based crosslinking in silicone rubber. This finding is evident as higher residue is obtained with the fumed silica filler despite being filled at a significantly lower loading level compared to ground silica. The surface residue morphology obtained, and the roughness determined for the tested samples of the composites in the dry-arc resistance test indicate the formation of a coherent residue with the fumed silica filled composite. Such coherent residue could act as a barrier to shield the unaffected material underneath the damaged surface during dry-band arcing, thereby preventing progressive erosion. The outcomes of this study suggest a significant role for fumed silica promoting more interactions with silicone rubber to suppress DC erosion compared to ground silica fillers.


2012 ◽  
Vol 45 (3) ◽  
pp. 271-288 ◽  
Author(s):  
Jianhua Guo ◽  
Xingrong Zeng ◽  
Hongqiang Li ◽  
Quankun Luo

Author(s):  
Najwa Kamarudin ◽  
Jeefferie Abd Razak ◽  
Nurbahirah Norddin ◽  
Aminuddin Aman ◽  
Nazurah Nazir

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4305
Author(s):  
Marek Florkowski

Understanding a partial discharge mechanism at direct current (DC) is an actual research topic that requires both modeling, simulations and measurements. This paper describes an influence of insulating material properties on partial discharges at DC voltage. Modifications of the traditional model reflecting the conditions of partial discharges (PD) inception and post discharge processes at DC voltage have been proposed. The aim was to show the partial discharge mechanisms and draw attention to the role of parameters of insulation materials adjacent to the cavity at DC voltage. The investigations were performed on two kinds of dielectric material used in power cables. Various combinations of specimens were designed to reveal the effect of the material resistivity on the PD activity. Key observations referred to the impact of the void adjacent material resistance on the partial discharge inception voltage threshold at DC voltage. The modified PD model was applied to analyze both inception and post discharge recovery stage. The role of dielectric properties of material adjacent to the void was investigated, highlighting its impact during static inception stage and in charging stage. Despite many simplifications introduced in the model, measurement results have confirmed the role of the dielectric material surrounding the void on partial discharge dynamics. The average time interval between PD pulses revealed a systematic relationship with respect to the applied voltage and specimen resistivity. This value can be considered in the future research for diagnostic indicator at DC voltage.


1993 ◽  
Vol 66 (1) ◽  
pp. 48-60 ◽  
Author(s):  
H. Cochrane ◽  
C. S. Lin

Abstract The present study uses a commercial heat cured silicone rubber formula (including a process aid) and mixing techniques to investigate the effect of varying fumed silica properties—including load, surface area, silica structure level, and surface pretreatment levels—on the rubber processing, curing, and cured physical properties. Based on the results, a simple silica network reinforcement model was developed to explain the changes in processing, curing, and vulcanizate properties of the silicone elastomers. The network is held together by silica-silica interactions and silica-polymer-silica bridge bonds between the silica aggregates. Increasing the silica loading, surface area, and structure level increases the number of interactions and hence the network strength. The pretreatment of the silica surface with organosilane molecules reduces the strength of silica-silica and silica-polymer interactions, therefore, weakening the silica network. Furthermore, the good interrelations between the initial plasticity, crepe hardening, curing, modulus yield, and durometer values strongly supports the concept of the presence of a silica network within the compounds under the low strain conditions of the tests.


Sign in / Sign up

Export Citation Format

Share Document