Modeling Diesel Oxidation Catalyst Upstream and Downstream Exhaust Gas Temperatures Using LSTM RNN

Author(s):  
Mahdi A. A. Elhag ◽  
Mehmet Selcuk Arslan
Author(s):  
Sangamesh Bhure

Currently the emission norms are becoming more stringent, continuous modifications are taking place in existing I.C engines as well as in after treatment devices (ATDs). Exhaust Gas Recirculation (EGR) and Diesel Oxidation Catalyst (DOC) are the mandatory ATDs controlled electronically to optimize engine brake power, fuel consumption and emissions. The conversion efficiency of ATDs mainly depends on exhaust pressure, temperature, flow rate and fluid characteristics of exhaust gas. However, the installation of ATDs increases the exhaust back pressure in the exhaust system. The back pressure of engine also depends on the parameters like engine operating conditions, design of exhaust valves, valve lift time, exhaust gas dynamics and exhaust manifold design etc. In this paper the attempt is made to study the effect of back pressure on performance and emission of diesel engines equipped with EGR and DOC. Here we have not modified the intake and exhaust valves instead, we varied the back pressure of exhaust system using back pressure control valve (BPCV). BPCV is operated manually at three positions, they are 100%, 87.5% and 75% BPCV lifts. The readings are taken in different combinations of BPCV lifts and brake torque at 20, 40, 60, and 80 N-m. The results obtained shows variation of BPCV lift and brake torque effected on performance of engine, DOC and EGR operations as well as fuel consumption. The NOx is reduced by 15%; HC and CO are reduced significantly. However, there is an increase in brake specific fuel consumption (BSFC) and exhaust smoke.


2015 ◽  
Vol 656-657 ◽  
pp. 538-543 ◽  
Author(s):  
Sirichai Jirawongnuson ◽  
Worathep Wachirapan ◽  
Tul Suthiprasert ◽  
Ekathai Wirojsakunchai

In this research study, a synthetic exhaust gas system is employed to simulate various exhaust conditions similar to those from conventional diesel and Dual Fuel-Premixed Charge Compression Ignition (DF-PCCI) combustion. OEM DOC is tested to compare the effectiveness of reducing CO from both exhaust characteristics. Variations of the temperature and the concentration of CO, THC, and O2 are done to investigate DOC performance on CO reductions according to Design of Experiment (DOE) concept. The results showed that in DF-PCCI exhaust conditions, DOC requires higher exhaust gas temperature as well as O2 concentration to reduce CO emissions.


Author(s):  
Ming-Feng Hsieh ◽  
Junmin Wang

NO and NO2 are generally considered together as NOx in engine emissions. Since NO2/NOx ratio is small in diesel engine exhaust gas, very often, existence of NO2 is ignored in studies/applications. However, current diesel aftertreatment systems generally include diesel oxidation catalysts (DOCs) at upstream of other catalysts such as diesel particulate filter (DPF) and selective catalytic reduction (SCR). DOC can significantly increase the NO2 fraction in the exhaust NOx. Because NO2 and NO have completely different reaction characters within catalysts, e.g. NO2 can assist DPF regeneration while NO cannot, and SCR De-NOx rate can be increased with higher NO2/NOx ratio (no more than 0.5), considerations of NO2 in aftertreatment systems are becoming necessary. Nevertheless, current onboard NOx sensors cannot differentiate NO and NO2 from NOx. This induces an interest in the method of estimating the concentrations of NO and NO2 in the exhaust gas by available measurements. In this paper, a physically-based, DOC control-oriented model which considers the NO and NO2 related dynamics and an engine exhaust NO/NO2 prediction method were proposed for the purposes of NO/NO2 ratio estimation in diesel engine aftertreatment systems, and the developed model was validated with experimental data.


Author(s):  
Steven G. Fritz ◽  
John C. Hedrick ◽  
Tom Weidemann

This paper describes the development of a low emissions upgrade kit for EMD GP20D and GP15D locomotives. These locomotives were originally manufactured in 2001, and met EPA Tier 1 locomotive emission regulations. The 1,491 kW (2,000 HP) EMD GP20D locomotives are powered by Caterpillar 3516B engines, and the 1,119 kW (1,500 HP) EMD GP15D locomotives are powered by Caterpillar 3512B engines. CIT Rail owns a fleet of 50 of these locomotives that are approaching their mid-life before first overhaul. Baseline exhaust emissions testing was followed by a low emissions retrofit development focusing on fuel injection timing, crankcase ventilation filtration, and application of a diesel oxidation catalyst (DOC), and then later a diesel particulate filter (DPF). The result was a EPA Tier 0+ certification of the low emissions upgrade kit, with emission levels below EPA Line-Haul Tier 3 NOx, and Tier 4 HC, CO, and PM levels.


MTZ worldwide ◽  
2010 ◽  
Vol 71 (6) ◽  
pp. 36-41
Author(s):  
Alexander Winkler ◽  
Davide Ferri ◽  
Eth Panayotis Dimopoulos Eggenschwiler ◽  
Myriam Aguirre

2009 ◽  
Author(s):  
Satoshi Sumiya ◽  
Hanako Oyamada ◽  
Tetsuya Fujita ◽  
Keisuke Nakamura ◽  
Kazuo Osumi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document