State Variables Estimation for a Counter-Flow Double-Pipe Heat Exchanger Using Multi-linear Model

Author(s):  
Betty López Zapata ◽  
R.F. Escobar ◽  
Manuel Adam Medina ◽  
Carlos M. Astorga Zaragoza
2019 ◽  
Vol 5 ◽  
pp. 34-40 ◽  
Author(s):  
M. Sridharan ◽  
R. Devi ◽  
C.S. Dharshini ◽  
M. Bhavadarani

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Putu Wijaya Sunu ◽  
I Putu Darmawa ◽  
Anak Agung Ngurah Bagus Mulawarman ◽  
I Made Suarta ◽  
I Putu Gede Sopan Rahtika

Karakteristik perpindahan panas pada grooved double pipe heat exchanger  diteliti secara experimental. Penelitian ini bertujuan untuk mengungkap fenomena karakteristik temperatur fluida dingin pada proses perpindahan panas pada heat exchanger . Dalam penelitian ini, digunakan air sebagai fluida panas dan dingin dengan pola aliran counter flow dan laju aliran sama untuk kedua fluida yaitu 15 lpm. Groove diposisikan pada daerah annulus yaitu pada dinding luar tube dengan bentuk rectangular dan pola circumferential.  Karakteristik dimensi groove yaitu dalam tinggi groove adalah 0,3 mm; jarak antar groove adalah 8 mm; dan lebar groove sebagai variabel bebas yaitu 1 mm dan 2 mm. Temperatur fluida panas yang digunakan adalah 50 ± 0,50C sedangkan temperatur fluida dingin adalah 30 ± 0,50C. Data hasil pengukuran temperatur pada sisi masuk dan keluar penukar kalor dengan lebar groove 1 mm dan 2 mm dibandingkan untuk mengetahui karakteristik peningkatan temperatur fluida dingin. Pada penelitian ini digunakan metode laju temperatur dan akselerasi temperatur untuk membandingkan variabel dalam penelitian ini. Hasil penelitian ini mengungkap bahwa pemasangan groove meningkatkan jumlah kalor yang mampu diserap fluida dingin. Heat exchanger  dengan lebar groove 1 mm, mampu menyerap panas ±2,3 % lebih baik dibandingkan dengan heat exchanger dengan lebar groove 2 mm.


2019 ◽  
Vol 801 ◽  
pp. 193-198 ◽  
Author(s):  
Abdallah Yousef Mohammed Ali ◽  
Ahmed H. El-Shazly ◽  
M.F. El-Kady ◽  
Hesham Ibrahim Fathi ◽  
Mohamed R. El-Marghany

In the present study, heat transfer characteristics of MgO-oil based nanofluid in a miniature counter-flow double-pipe heat exchanger are investigated experimentally and numerically. The nanofluid is a mixture of corn oil as a base fluid and MgO particles in nanorange. The heat exchanger is fabricated from 316 stainless steel with length 500 mm. Cold water flows in the annulus side, and the nanofluid is utilized as the hot medium in the inner tube. ANSYS FLUENT 17,0 commercial software was employed for numerical investigation. The results obtained from using nanofluids are compared with the pure oil base fluid as a hot medium. Effects of inlet flow rate of hot nanofluids and concentration of nanoparticles are considered. It is observed that the average heat transfer rates for nanofluids are higher than those for pure corn oil. The improvement of both MgO concentration and inlet flow rates of nanofluid has a positive impact on the overall heat transfer coefficient and heat transfer rate. In contrast, the pumping power augments as well as the pressure drop increases.


2020 ◽  
Vol 5 (11) ◽  
pp. 1301-1306
Author(s):  
C. E. Ebieto ◽  
R. R. Ana ◽  
O. E. Nyong ◽  
E. G. Saturday

Engineering education is incomplete without laboratory practices. One of such laboratory equipment necessary for all engineering students to have hands-on in the course of their undergraduate studies is the heat exchanger. This work presents the detailed design and construction of a laboratory type double pipe heat exchanger that can be used both in the parallel and counter flow configuration. The heat exchanger was constructed using galvanized steel for both the tube and shell. Experiments were designed and carried out to test the performance of the heat exchangers. The heat exchanger performance characteristics (logarithm mean temperature difference (LMTD), heat transfer rate, effectiveness, and overall heat transfer coefficient) were obtained and compared for the two configurations. The LMTD tends to be relatively constant as the flow rate was increased for both the parallel and counter-flow configuration but with a higher value for the parallel flow configuration. The heat exchanger has a higher heat transfer rate, effectiveness, and overall heat transfer coefficient and therefore has more performance capability for the counter-flow configuration. The overall heat transfer coefficient increased as the flow rate increased for both configurations. Importantly, as a result of this project, Mechanical Engineering students can now have hands-on laboratory experience on how the double pipe heat exchanger works.


Sign in / Sign up

Export Citation Format

Share Document