scholarly journals Varanus: In Situ Monitoring for Large Scale Cloud Systems

Author(s):  
Jonathan Stuart Ward ◽  
Adam Barker

2021 ◽  
Vol 294 ◽  
pp. 106373
Author(s):  
Meng-Ya Sun ◽  
Bin Shi ◽  
Cheng-Cheng Zhang ◽  
Xing Zheng ◽  
Jun-Yi Guo ◽  
...  


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hao Wu ◽  
Jian Liu ◽  
Xiaogang Wang ◽  
Lipeng Liu ◽  
Zhenhua Tian

Spatial response is a feature of rock deformation in regions surrounding large-scale underground caverns and includes significant vertical components due to the construction method of layered excavation. This vertical response is different to the longitudinal response of excavation deformation surrounding shallow tunnels. The study of longitudinal deformation profiles (LDPs), which describe the spatial response of longitudinal tunnel excavation and surrounding rock deformation, is a mature field. However, there has been no independent discussion of the relationship between vertical excavation and the spatial response of deformation in large-scale underground caverns nor the incremental characteristics of layered excavation. In this paper, we define the attenuation function λ x of unloading strength based on theoretical analyses and numerical simulations. We also propose the concept and form of the vertical deformation profile (VDP) curve for the first time and apply it to the Baihetan and Lianghekou Hydropower Stations. After fitting the complete VDP curve with a Levenberg-Marquardt algorithm, we verify its validity by comparing predicted data with in situ monitoring data. The curve can be used to quantitatively analyze the relationship between layered excavation and incremental deformation of surrounding rock, providing a basis for the rapid evaluation of staged deformation during the excavation of large underground caverns. This study has practical significance for the control of deformation in rock surrounding excavations and decision-making during the construction progress.



2018 ◽  
Author(s):  
Tomislav Stolar ◽  
Stipe Lukin ◽  
Martina Tireli ◽  
Irena Sović ◽  
Bahar Karadeniz ◽  
...  

<p>We demonstrate a controllable mechanochemical synthesis of cocrystal polymorphs of ascorbic acid (vitamin C) and nicotinamide (vitamin B3) on different scales and without using bulk solvents. Next to the previously described polymorph of the 1:1 cocrystal, which is one of the first cocrystals approved for human consumption, we report here a new, thermodynamically more stable polymorph detected during in situ synchrotron powder X-ray diffraction monitoring of milling reactions. The new polymorph is currently available exclusively by mechanochemical synthesis, and its crystal structure was determined from powder X-ray diffraction data. Laboratory in situ monitoring by Raman spectroscopy provided direct insight into the cocrystals formation and was further used to optimize the manufacturing procedure. Sub-gram synthesis using laboratory mixer mill was transferred to the 10 g scale on a planetary ball mill and continuous manufacturing using a twin-screw extruder. Both cocrystal polymorphs perform excellently in tableting, thus alleviating the notoriously poor compactible properties of vitamin C, while the mechanochemical cocrystallization does not harm its antioxidant properties.<b></b></p>



2018 ◽  
Author(s):  
Tomislav Stolar ◽  
Stipe Lukin ◽  
Martina Tireli ◽  
Irena Sović ◽  
Bahar Karadeniz ◽  
...  

<p>We demonstrate a controllable mechanochemical synthesis of cocrystal polymorphs of ascorbic acid (vitamin C) and nicotinamide (vitamin B3) on different scales and without using bulk solvents. Next to the previously described polymorph of the 1:1 cocrystal, which is one of the first cocrystals approved for human consumption, we report here a new, thermodynamically more stable polymorph detected during in situ synchrotron powder X-ray diffraction monitoring of milling reactions. The new polymorph is currently available exclusively by mechanochemical synthesis, and its crystal structure was determined from powder X-ray diffraction data. Laboratory in situ monitoring by Raman spectroscopy provided direct insight into the cocrystals formation and was further used to optimize the manufacturing procedure. Sub-gram synthesis using laboratory mixer mill was transferred to the 10 g scale on a planetary ball mill and continuous manufacturing using a twin-screw extruder. Both cocrystal polymorphs perform excellently in tableting, thus alleviating the notoriously poor compactible properties of vitamin C, while the mechanochemical cocrystallization does not harm its antioxidant properties.<b></b></p>



2012 ◽  
Vol 51 (31) ◽  
pp. 7636 ◽  
Author(s):  
Gerard Dooly ◽  
John Clifford ◽  
Gabriel Leen ◽  
Elfed Lewis


2021 ◽  
Vol 13 (6) ◽  
pp. 1175
Author(s):  
Yanqing Yang ◽  
Jianyun Zhang ◽  
Zhenxin Bao ◽  
Tianqi Ao ◽  
Guoqing Wang ◽  
...  

Multi-source soil moisture (SM) products provide a vigorous tool for the estimation of soil moisture on a large scale, but it is crucial to carry out the evaluation of those products before further application. In the present work, an evaluation framework on multi-source SM datasets over central and eastern agricultural areas of China was firstly proposed, based on a dense in situ SM monitoring network of 838 stations from 11 July 2012 to 31 December 2017. Each station adopted the most accurate gravimetric method for measuring the actual soil moisture. The effects of land use types and wet–dry conditions on the performances of multi-source SM products were further analyzed. Most satellite/reanalysis SM products could capture the spatial–temporal changes in soil moisture, especially for ERA5 products that matched the closest to the station-measured SM; by contrast, those satellite products showed poor spatial–temporal performances. Such phenomenon was also quantitatively demonstrated by the four statistical metrics correlation coefficient (CC), p-value, bias and root mean squared error (RMSE) between the satellite/reanalysis SM products and the ground-observed SM series. Further, most satellite/reanalysis SM products had poor performances in Forestland and Grassland areas, with a lower CC and a larger positive bias and RMSE. Such overestimation on soil moisture is possibly influenced by the inestimable parameter vegetation geometry and the vegetation water content in the radiative transfer models. The arid areas showed the worst CC between the station-observed SM data and different satellite/reanalysis SM products; meanwhile, the humid and semi-arid areas presented larger SM estimation errors than the other areas, especially for the satellite products. The fairly dry surface soil (arid area) and open water surface contamination (humid area) are suggested to hinder the reading of microwave-based retrieval systems. Additionally, the reanalysis SM products outperformed the satellite SM products in the evaluated areas, with better spatial–temporal performances, seasonality reflection and higher accuracy on SM estimation (higher CC, and lower bias and RMSE). This is because the reanalysis datasets assimilated various sources of datasets, especially the ground-observed data, with high quality. The evaluated results could provide guidance for fusing different satellite/reanalysis products, as a new feasible alternative to monitoring SM information in the future.



2001 ◽  
Vol 89 ◽  
pp. 24-26
Author(s):  
Y. Jayet ◽  
J.-C. Baboux
Keyword(s):  


2008 ◽  
Vol 52 (1-2) ◽  
pp. 85
Author(s):  
Ákos Becker ◽  
Gábor Harsányi


2018 ◽  
Vol 23 (suppl_1) ◽  
pp. e16-e16
Author(s):  
Ahmed Moussa ◽  
Audrey Larone-Juneau ◽  
Laura Fazilleau ◽  
Marie-Eve Rochon ◽  
Justine Giroux ◽  
...  

Abstract BACKGROUND Transitions to new healthcare environments can negatively impact patient care and threaten patient safety. Immersive in situ simulation conducted in newly constructed single family room (SFR) Neonatal Intensive Care Units (NICUs) prior to occupancy, has been shown to be effective in testing new environments and identifying latent safety threats (LSTs). These simulations overlay human factors to identify LSTs as new and existing process and systems are implemented in the new environment OBJECTIVES We aimed to demonstrate that large-scale, immersive, in situ simulation prior to the transition to a new SFR NICU improves: 1) systems readiness, 2) staff preparedness, 3) patient safety, 4) staff comfort with simulation, and 5) staff attitude towards culture change. DESIGN/METHODS Multidisciplinary teams of neonatal healthcare providers (HCP) and parents of former NICU patients participated in large-scale, immersive in-situ simulations conducted in the new NICU prior to occupancy. One eighth of the NICU was outfitted with equipment and mannequins and staff performed in their native roles. Multidisciplinary debriefings, which included parents, were conducted immediately after simulations to identify LSTs. Through an iterative process issues were resolved and additional simulations conducted. Debriefings were documented and debriefing transcripts transcribed and LSTs classified using qualitative methods. To assess systems readiness and staff preparedness for transition into the new NICU, HCPs completed surveys prior to transition, post-simulation and post-transition. Systems readiness and staff preparedness were rated on a 5-point Likert scale. Average survey responses were analyzed using dependent samples t-tests and repeated measures ANOVAs. RESULTS One hundred eight HCPs and 24 parents participated in six half-day simulation sessions. A total of 75 LSTs were identified and were categorized into eight themes: 1) work organization, 2) orientation and parent wayfinding, 3) communication devices/systems, 4) nursing and resuscitation equipment, 5) ergonomics, 6) parent comfort; 7) work processes, and 8) interdepartmental interactions. Prior to the transition to the new NICU, 76% of the LSTs were resolved. Survey response rate was 31%, 16%, 7% for baseline, post-simulation and post-move surveys, respectively. System readiness at baseline was 1.3/5,. Post-simulation systems readiness was 3.5/5 (p = 0.0001) and post-transition was 3.9/5 (p = 0.02). Staff preparedness at baseline was 1.4/5. Staff preparedness post-simulation was 3.3/5 (p = 0.006) and post-transition was 3.9/5 (p = 0.03). CONCLUSION Large-scale, immersive in situ simulation is a feasible and effective methodology for identifying LSTs, improving systems readiness and staff preparedness in a new SFR NICU prior to occupancy. However, to optimize patient safety, identified LSTs must be mitigated prior to occupancy. Coordinating large-scale simulations is worth the time and cost investment necessary to optimize systems and ensure patient safety prior to transition to a new SFR NICU.



Sign in / Sign up

Export Citation Format

Share Document