Design of a methodology for the efficient use of fly ash as a partial substitute material for portland cement in concrete mixtures

Author(s):  
Everardo Donato Sanchez Topete ◽  
Mariela Rendon Belmonte ◽  
Jose Gabriel Rios Moreno ◽  
Abraham Lopez Miguel
2018 ◽  
Vol 195 ◽  
pp. 01012
Author(s):  
Kiki Dwi Wulandari ◽  
Januarti Jaya Ekaputri ◽  
Triwulan ◽  
Chikako Fujiyama ◽  
Davin H. E. Setiamarga

Specific microbial agents such as bacteria are often used in concrete to improve its performance. Some microbes act as self-healing agents to close cracks in concrete, and to increase concrete strength. This paper presents a study to observe the effects of microbe addition to two types of concrete mixtures the fly ash-based, as geopolymer paste, and portland cement paste containing fly ash. Furthermore, the investigation was conducted to compare the properties of each paste, such as its compressive strengths, specific gravities, porosity, microstructures, and XRay diffracting properties. The results indicate that microbial activities positively affected the properties of both, portland cement paste and geopolymer paste. The result reported here strongly suggests that fly ash can be used to produce a high quality, but environmental friendly construction material when it’s mixed together with useful microbes.


Author(s):  
Jacek Gołaszewski ◽  
Tomasz Ponikiewski ◽  
Grzegorz Cygan

Abstract The rheological properties of fresh ordinary concrete are closely affected by temperature and time. The paper presents the study of consistency of fresh concrete mixtures made with Portland cement and cement with calcareous fly ash. Two types of admixtures were used. It was proven that the temperature has a clear effect on workability and compressive strength concrete. Influence on workability can be reduced by selecting the appropriate superplasticizer and cement.


Author(s):  
Mohamed Nagib Abou-Zeid ◽  
John B. Wojakowski ◽  
Stephen A. Cross

Alkali-silica reactions are a major cause of concrete deterioration. The reactions can lead to severe damage that may ultimately endanger the performance and safety of concrete structures. The use of fly ash as partial replacement of Portland cement and the use of some limestone in concrete mixtures were considered as two potential approaches to minimize the severity of the problem. Sand-gravel concrete mixtures were prepared by replacing 15, 25, and 35 percent, by weight of Portland cement, with an equal weight of ASTM Type C fly ash. In those mixtures, either 30 percent or 50 percent of the total aggregate was limestone. Concrete beams were prepared and the wetting-and-drying test was performed in accordance with Kansas Department of Transportation (KDOT) specifications. Also, freeze-and-thaw testing of concrete beams were performed on some selected mixtures. Results indicate that most of the fly ash concrete mixtures with 30 percent limestone do not fulfill the requirements of the KDOT specifications. The fly ash mixtures with 50 percent limestone yield better results; most of them meet the specifications. Results also show that increasing the fly ash dosage does not seem as effective as introducing limestone for alleviating alkali-silica reaction problems.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4007 ◽  
Author(s):  
Miguel Angel Baltazar-Zamora ◽  
David M. Bastidas ◽  
Griselda Santiago-Hurtado ◽  
José Manuel Mendoza-Rangel ◽  
Citlalli Gaona-Tiburcio ◽  
...  

The use of supplementary cementitious materials such as fly ash, slag, and silica fume improve reinforced concrete corrosion performance, while decreasing cost and reducing environmental impact compared to ordinary Portland cement. In this study, the corrosion behavior of AISI 1018 carbon steel (CS) and AISI 304 stainless steel (SS) reinforcements was studied for 365 days. Three different concrete mixtures were tested: 100% CPC (composite Portland cement), 80% CPC and 20% silica fume (SF), and 80% CPC and 20% fly ash (FA). The concrete mixtures were designed according to the ACI 211.1 standard. The reinforced concrete specimens were immersed in a 3.5 wt.% NaCl test solution to simulate a marine environment. Corrosion monitoring was evaluated using the corrosion potential (Ecorr) according to ASTM C876 and the linear polarization resistance (LPR) according to ASTM G59. The results show that AISI 304 SS reinforcements yielded the best corrosion behavior, with Ecorr values mainly pertaining to the region of 10% probability of corrosion, and corrosion current density (icorr) values indicating passivity after 105 days of experimentation and low probability of corrosion for the remainder of the test period.


2018 ◽  
Vol 17 (9) ◽  
pp. 2023-2030
Author(s):  
Arnon Chaipanich ◽  
Chalermphan Narattha ◽  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1015 ◽  
Author(s):  
Emy Aizat Azimi ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Petrica Vizureanu ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Andrei Victor Sandu ◽  
...  

A geopolymer has been reckoned as a rising technology with huge potential for application across the globe. Dolomite refers to a material that can be used raw in producing geopolymers. Nevertheless, dolomite has slow strength development due to its low reactivity as a geopolymer. In this study, dolomite/fly ash (DFA) geopolymer composites were produced with dolomite, fly ash, sodium hydroxide, and liquid sodium silicate. A compression test was carried out on DFA geopolymers to determine the strength of the composite, while a synchrotron Micro-Xray Fluorescence (Micro-XRF) test was performed to assess the elemental distribution in the geopolymer composite. The temperature applied in this study generated promising properties of DFA geopolymers, especially in strength, which displayed increments up to 74.48 MPa as the optimum value. Heat seemed to enhance the strength development of DFA geopolymer composites. The elemental distribution analysis revealed exceptional outcomes for the composites, particularly exposure up to 400 °C, which signified the homogeneity of the DFA composites. Temperatures exceeding 400 °C accelerated the strength development, thus increasing the strength of the DFA composites. This appears to be unique because the strength of ordinary Portland Cement (OPC) and other geopolymers composed of other raw materials is typically either maintained or decreases due to increased heat.


2008 ◽  
Vol 38 (6) ◽  
pp. 832-840 ◽  
Author(s):  
David G. Snelson ◽  
Stan Wild ◽  
Martin O'Farrell

2012 ◽  
Vol 29 ◽  
pp. 33-41 ◽  
Author(s):  
Vili Lilkov ◽  
Ognyan Petrov ◽  
Yana Tzvetanova ◽  
Plamen Savov

Author(s):  
Kotaro Kawamura ◽  
Joe Takemura ◽  
Shigenobu Iguchi ◽  
Tsutomu Yoshida ◽  
Masashi Kobayashi

<p>We are carrying out a construction project of new railroad viaducts. These new railroad viaducts are constructing using about 110,000 m<span>3</span> volume concrete. In this construction place, it is difficult for us to get low ASR-reactive aggregates and it is expected to be supplied with snowmelt water on the viaducts in winter. Then we tested ASR-reactive these local aggregates and found an effective mixed ratio of fly-ash is 20% of cement. On the other hand, various side effects were also expected by using fly-ash. For example, initial cracking due to contraction, early strength concrete, bleeding, etc. Therefore, we repeated various tests and examined and carried out a method that could ensure the same construction method and quality as when using ordinary Portland cement, even with fly-ash. Also, we adopted a structure that is unlikely to be affected by rainwater as a structural measure. For example, the entire adoption of a ramen type viaduct that has eliminated bearings, adoption of FRP sound barrier, etc. Then we made it possible to build highly durable railway viaducts by these various measures of materials and structures.</p>


Sign in / Sign up

Export Citation Format

Share Document