Adversarial Network for Photographic Image Synthesis from Fine-grained Captions

Author(s):  
Padmashree Desai ◽  
C Sujatha ◽  
Ramnath Shanbhag ◽  
Raghavendra Gotur ◽  
Rajesh Hebbar ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Linyan Li ◽  
Yu Sun ◽  
Fuyuan Hu ◽  
Tao Zhou ◽  
Xuefeng Xi ◽  
...  

In this paper, we propose an Attentional Concatenation Generative Adversarial Network (ACGAN) aiming at generating 1024 × 1024 high-resolution images. First, we propose a multilevel cascade structure, for text-to-image synthesis. During training progress, we gradually add new layers and, at the same time, use the results and word vectors from the previous layer as inputs to the next layer to generate high-resolution images with photo-realistic details. Second, the deep attentional multimodal similarity model is introduced into the network, and we match word vectors with images in a common semantic space to compute a fine-grained matching loss for training the generator. In this way, we can pay attention to the fine-grained information of the word level in the semantics. Finally, the measure of diversity is added to the discriminator, which enables the generator to obtain more diverse gradient directions and improve the diversity of generated samples. The experimental results show that the inception scores of the proposed model on the CUB and Oxford-102 datasets have reached 4.48 and 4.16, improved by 2.75% and 6.42% compared to Attentional Generative Adversarial Networks (AttenGAN). The ACGAN model has a better effect on text-generated images, and the resulting image is closer to the real image.


2021 ◽  
Vol 12 (5) ◽  
pp. 1-18
Author(s):  
Min Wang ◽  
Congyan Lang ◽  
Liqian Liang ◽  
Songhe Feng ◽  
Tao Wang ◽  
...  

Semantic image synthesis is a new rising and challenging vision problem accompanied by the recent promising advances in generative adversarial networks. The existing semantic image synthesis methods only consider the global information provided by the semantic segmentation mask, such as class label, global layout, and location, so the generative models cannot capture the rich local fine-grained information of the images (e.g., object structure, contour, and texture). To address this issue, we adopt a multi-scale feature fusion algorithm to refine the generated images by learning the fine-grained information of the local objects. We propose OA-GAN, a novel object-attention generative adversarial network that allows attention-driven, multi-fusion refinement for fine-grained semantic image synthesis. Specifically, the proposed model first generates multi-scale global image features and local object features, respectively, then the local object features are fused into the global image features to improve the correlation between the local and the global. In the process of feature fusion, the global image features and the local object features are fused through the channel-spatial-wise fusion block to learn ‘what’ and ‘where’ to attend in the channel and spatial axes, respectively. The fused features are used to construct correlation filters to obtain feature response maps to determine the locations, contours, and textures of the objects. Extensive quantitative and qualitative experiments on COCO-Stuff, ADE20K and Cityscapes datasets demonstrate that our OA-GAN significantly outperforms the state-of-the-art methods.


2021 ◽  
Vol 11 (4) ◽  
pp. 1380
Author(s):  
Yingbo Zhou ◽  
Pengcheng Zhao ◽  
Weiqin Tong ◽  
Yongxin Zhu

While Generative Adversarial Networks (GANs) have shown promising performance in image generation, they suffer from numerous issues such as mode collapse and training instability. To stabilize GAN training and improve image synthesis quality with diversity, we propose a simple yet effective approach as Contrastive Distance Learning GAN (CDL-GAN) in this paper. Specifically, we add Consistent Contrastive Distance (CoCD) and Characteristic Contrastive Distance (ChCD) into a principled framework to improve GAN performance. The CoCD explicitly maximizes the ratio of the distance between generated images and the increment between noise vectors to strengthen image feature learning for the generator. The ChCD measures the sampling distance of the encoded images in Euler space to boost feature representations for the discriminator. We model the framework by employing Siamese Network as a module into GANs without any modification on the backbone. Both qualitative and quantitative experiments conducted on three public datasets demonstrate the effectiveness of our method.


2021 ◽  
Vol 30 ◽  
pp. 2798-2809
Author(s):  
Yanhua Yang ◽  
Lei Wang ◽  
De Xie ◽  
Cheng Deng ◽  
Dacheng Tao

Author(s):  
Wenqi Zhao ◽  
Satoshi Oyama ◽  
Masahito Kurihara

Counterfactual explanations help users to understand the behaviors of machine learning models by changing the inputs for the existing outputs. For an image classification task, an example counterfactual visual explanation explains: "for an example that belongs to class A, what changes do we need to make to the input so that the output is more inclined to class B." Our research considers changing the attribute description text of class A on the basis of the attributes of class B and generating counterfactual images on the basis of the modified text. We can use the prediction results of the model on counterfactual images to find the attributes that have the greatest effect when the model is predicting classes A and B. We applied our method to a fine-grained image classification dataset and used the generative adversarial network to generate natural counterfactual visual explanations. To evaluate these explanations, we used them to assist crowdsourcing workers in an image classification task. We found that, within a specific range, they improved classification accuracy.


2020 ◽  
Vol 34 (05) ◽  
pp. 8830-8837
Author(s):  
Xin Sheng ◽  
Linli Xu ◽  
Junliang Guo ◽  
Jingchang Liu ◽  
Ruoyu Zhao ◽  
...  

We propose a novel introspective model for variational neural machine translation (IntroVNMT) in this paper, inspired by the recent successful application of introspective variational autoencoder (IntroVAE) in high quality image synthesis. Different from the vanilla variational NMT model, IntroVNMT is capable of improving itself introspectively by evaluating the quality of the generated target sentences according to the high-level latent variables of the real and generated target sentences. As a consequence of introspective training, the proposed model is able to discriminate between the generated and real sentences of the target language via the latent variables generated by the encoder of the model. In this way, IntroVNMT is able to generate more realistic target sentences in practice. In the meantime, IntroVNMT inherits the advantages of the variational autoencoders (VAEs), and the model training process is more stable than the generative adversarial network (GAN) based models. Experimental results on different translation tasks demonstrate that the proposed model can achieve significant improvements over the vanilla variational NMT model.


Sign in / Sign up

Export Citation Format

Share Document