Lateral oxide current aperture for InP-based vertical electron current flow devices: Demonstration using RTD's

Author(s):  
Yen ◽  
Blank ◽  
Mishra
2005 ◽  
Vol 863 ◽  
Author(s):  
C. L. Gan ◽  
C. Y. Lee ◽  
C. K. Cheng ◽  
J. Gambino

AbstractThe reliability of Cu M1-V1-M2-V2-M3 interconnects with SiN and CoWP cap layers was investigated. Similar to previously reported results, the reliability of CoWP capped structures is much better than identical SiN capped structures. However, it was also observed that the reliability of CoWP capped interconnects was independent of the direction of electrical current flow. This phenomenon is different from what was observed for SiN capped structures, where M2 lines with electron current flow in the upstream configuration (“via-below”) have about three times larger median-time-to-failure than identical lines in the downstream configuration (“viaabove”). This is because the Cu/SiN interface is the preferential void nucleation site and provides the fastest diffusion pathway in such an architecture. Failure analysis has shown that fatal partially-spanned voids usually had formed directly below the via for “via-above” configuration, and fully-spanned voids occurred in the lines above the vias for “via-below” configuration.On the other hand, failure analysis for CoWP-coated Cu structures showed that partiallyspanned voids below the via do not cause fatal failures in the downstream configuration. This is because the CoWP layer is conducting, and thus able to shunt current around the void. As a result, a large fully-spanning void is required to cause a failure, just like the upstream configuration. Thus the lifetime of an interconnect with a conducting cap layer is independent of whether the current is flowing upstream or downstream.


Author(s):  
Mohd Zamri ◽  
Pradip Ghosh ◽  
Akari Hayashi ◽  
Yasuhiko Hayashi ◽  
Masaki Tanemura ◽  
...  

Author(s):  
M. Zamri Yusop ◽  
Pradip Ghosh ◽  
Masato Sasase ◽  
Akari Hayashi ◽  
Yasuhiko Hayashi ◽  
...  

Author(s):  
Peter G. Self ◽  
Peter R. Buseck

ALCHEMI (Atom Location by CHanneling Enhanced Microanalysis) enables the site occupancy of atoms in single crystals to be determined. In this article the fundamentals of the method for both EDS and EELS will be discussed. Unlike HRTEM, ALCHEMI does not place stringent resolution requirements on the microscope and, because EDS clearly distinguishes between elements of similar atomic number, it can offer some advantages over HRTEM. It does however, place certain constraints on the crystal. These constraints are: a) the sites of interest must lie on alternate crystallographic planes, b) the projected charge density on the alternate planes must be significantly different, and c) there must be at least one atomic species that lies solely on one of the planes.An electron beam incident on a crystal undergoes elastic scattering; in reciprocal space this is seen as a diffraction pattern and in real space this is a modulation of the electron current across the unit cell. When diffraction is strong (i.e., when the crystal is oriented near to the Bragg angle of a low-order reflection) the electron current at one point in the unit cell will differ significantly from that at another point.


Sign in / Sign up

Export Citation Format

Share Document