Loss Comparison for Different Technologies of Semiconductors for Electrical Drive Motor Application

Author(s):  
Giorgo Kapino ◽  
Wulf-Toke Franke
Keyword(s):  
2021 ◽  
Vol 11 (11) ◽  
pp. 4856
Author(s):  
Hae-Sol Lee ◽  
Myeong-Hwan Hwang ◽  
Hyun-Rok Cha

As unmanned aerial vehicles expand their utilization and coverage, research is in progress to develop low-weight and high-performance motors to efficiently carry out various missions. An electromagnetic field interior permanent magnet (IPM) motor was designed and analyzed in this study that improved the flight performance and flight duration of an unmanned aerial vehicle (UAV). The output power and efficiency of a conventional commercial UAV motor were improved by designing an IPM motor of the same size, providing high power output and high-speed operation by securing high power density, wide speed range, and mechanical stiffness. The cooling performance and efficiency of the drive motor were improved without requiring a separate power source for cooling by introducing the helical-grooved self-cooling case, which has a low heat generation structure. Furthermore, the motor is oil-cooled through rotating power without a separate power source, reducing the weight of the UAV. The heat dissipation characteristics were verified by fabricating a prototype and taking actual measurements to verify the validity of the heat dissipation characteristics. The results of this study are expected to improve the flight duration and performance of UAVs and contribute to the efficiency of the design of a UAV drive motor.


2021 ◽  
Vol 12 (2) ◽  
pp. 59
Author(s):  
Ivan Arango ◽  
Carlos Lopez ◽  
Alejandro Ceren

Around the world, the e-bike has evolved from a recreational and sports object to an increasingly used means of transportation. Due to this, improving aspects such as range and energy efficiency has become very relevant. This article presents experimental models for the components’ efficiency of a mid-drive motor e-bike (charger; battery; and controller, motor, and reduction gears subsystem), and integrates them with previously elaborated models for the chain transmission system, thus generating an overall efficiency map of the e-bike. The range of the electric bicycle is analyzed by integrating the efficiency map of the system and its performance mathematical model, aiming to determine the per unit of distance battery energy consumption. The above-mentioned calculations are applied to develop a management strategy that can determine the optimal assistance level and chain transmission ratio, maximizing range and leaving speed unaffected. The driving strategy was compared against other driving techniques using computational analysis, this allowed for the observation of the proposed strategy improving the system’s range by reducing the battery energy consumption.


2020 ◽  
Author(s):  
Benny Yulianto ◽  
Ganjar Kurnia ◽  
Susilo Adi Widyanto ◽  
Achmad Widodo
Keyword(s):  

2014 ◽  
Vol 75 (6) ◽  
pp. 1109-1119
Author(s):  
A. P. Burkov ◽  
E. V. Krasil’nik”yants ◽  
A. A. Smirnov ◽  
G. A. Buldukyan ◽  
R. Yu. Naumov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document