Detection of Bughole on Concrete Surface with Convolutional Neural Network

Author(s):  
Gang Yao ◽  
Fujia Wei ◽  
Yang Yang ◽  
Yujia Sun
2020 ◽  
Vol 23 (13) ◽  
pp. 2952-2964
Author(s):  
Zhen Wang ◽  
Guoshan Xu ◽  
Yong Ding ◽  
Bin Wu ◽  
Guoyu Lu

Concrete surface crack detection based on computer vision, specifically via a convolutional neural network, has drawn increasing attention for replacing manual visual inspection of bridges and buildings. This article proposes a new framework for this task and a sampling and training method based on active learning to treat class imbalances. In particular, the new framework includes a clear definition of two categories of samples, a relevant sliding window technique, data augmentation and annotation methods. The advantages of this framework are that data integrity can be ensured and a very large amount of annotation work can be saved. Training datasets generated with the proposed sampling and training method not only are representative of the original dataset but also highlight samples that are highly complex, yet informative. Based on the proposed framework and sampling and training strategy, AlexNet is re-tuned, validated, tested and compared with an existing network. The investigation revealed outstanding performances of the proposed framework in terms of the detection accuracy, precision and F1 measure due to its nonlinear learning ability, training dataset integrity and active learning strategy.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Shengyuan Li ◽  
Xuefeng Zhao

Crack detection is important for the inspection and evaluation during the maintenance of concrete structures. However, conventional image-based methods need extract crack features using complex image preprocessing techniques, so it can lead to challenges when concrete surface contains various types of noise due to extensively varying real-world situations such as thin cracks, rough surface, shadows, etc. To overcome these challenges, this paper proposes an image-based crack detection method using a deep convolutional neural network (CNN). A CNN is designed through modifying AlexNet and then trained and validated using a built database with 60000 images. Through comparing validation accuracy under different base learning rates, 0.01 was chosen as the best base learning rate with the highest validation accuracy of 99.06%, and its training result is used in the following testing process. The robustness and adaptability of the trained CNN are tested on 205 images with 3120 × 4160 pixel resolutions which were not used for training and validation. The trained CNN is integrated into a smartphone application to mobile more public to detect cracks in practice. The results confirm that the proposed method can indeed detect cracks in images from real concrete surfaces.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5549
Author(s):  
Hyun Kyu Shin ◽  
Yong Han Ahn ◽  
Sang Hyo Lee ◽  
Ha Young Kim

There has been an increase in the deterioration of buildings and infrastructure in dense urban regions, and several defects in the structures are being exposed. To ensure the effective diagnosis of building conditions, vision-based automatic damage recognition techniques have been developed. However, conventional image processing techniques have some limitations in real-world situations owing to their manual feature extraction approach. To overcome these limitations, a convolutional neural network-based image recognition technique was adopted in this study, and a convolution-based concrete multi-damage recognition neural network (CMDnet) was developed. The image datasets consisted of 1981 types of concrete surface damages, including surface cracks, rebar exposure and delamination, as well as intact. Furthermore, it was experimentally demonstrated that the proposed model could accurately classify the damage types. The results obtained in this study reveal that the proposed model can recognize the different damage types from digital images of the surfaces of concrete structures. The trained CMDnet demonstrated a damage-detection accuracy of 98.9%. Moreover, the proposed model could be applied in automatic damage detection networks to achieve superior performance with regard to concrete surface damage detection and recognition, as well as accelerating efficient damage identification during the diagnosis of deteriorating structures used in civil engineering applications.


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document