Author(s):  
Muskan Patidar

Abstract: Social networking platforms have given us incalculable opportunities than ever before, and its benefits are undeniable. Despite benefits, people may be humiliated, insulted, bullied, and harassed by anonymous users, strangers, or peers. Cyberbullying refers to the use of technology to humiliate and slander other people. It takes form of hate messages sent through social media and emails. With the exponential increase of social media users, cyberbullying has been emerged as a form of bullying through electronic messages. We have tried to propose a possible solution for the above problem, our project aims to detect cyberbullying in tweets using ML Classification algorithms like Naïve Bayes, KNN, Decision Tree, Random Forest, Support Vector etc. and also we will apply the NLTK (Natural language toolkit) which consist of bigram, trigram, n-gram and unigram on Naïve Bayes to check its accuracy. Finally, we will compare the results of proposed and baseline features with other machine learning algorithms. Findings of the comparison indicate the significance of the proposed features in cyberbullying detection. Keywords: Cyber bullying, Machine Learning Algorithms, Twitter, Natural Language Toolkit


Author(s):  
Anurag Langan

Grading student answers is a tedious and time-consuming task. A study had found that almost on average around 25% of a teacher's time is spent in scoring the answer sheets of students. This time could be utilized in much better ways if computer technology could be used to score answers. This system will aim to grade student answers using the various Natural Language processing techniques and Machine Learning algorithms available today.


Author(s):  
Mark Steedman

Linguists and philosophers since Aristotle have attempted to reduce natural language semantics in general, and the semantics of eventualities in particular, to a ‘language of mind’, expressed in terms of various collections of underlying language-independent primitive concepts. While such systems have proved insightful enough to suggest that such a universal conceptual representation is in some sense psychologically real, the primitive relations proposed, based on oppositions like agent-patient, event-state, etc., have remained incompletely convincing. This chapter proposes that the primitive concepts of the language of mind are ‘hidden’, or latent, and must be discovered automatically by detecting consistent patterns of entailment in the vast amounts of text that are made available by the internet using automatic syntactic parsers and machine learning to mine a form- and language-independent semantic representation language for natural language semantics. The representations involved combine a distributional representation of ambiguity with a language of logical form.


JAMIA Open ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Meijian Guan ◽  
Samuel Cho ◽  
Robin Petro ◽  
Wei Zhang ◽  
Boris Pasche ◽  
...  

Abstract Objectives Natural language processing (NLP) and machine learning approaches were used to build classifiers to identify genomic-related treatment changes in the free-text visit progress notes of cancer patients. Methods We obtained 5889 deidentified progress reports (2439 words on average) for 755 cancer patients who have undergone a clinical next generation sequencing (NGS) testing in Wake Forest Baptist Comprehensive Cancer Center for our data analyses. An NLP system was implemented to process the free-text data and extract NGS-related information. Three types of recurrent neural network (RNN) namely, gated recurrent unit, long short-term memory (LSTM), and bidirectional LSTM (LSTM_Bi) were applied to classify documents to the treatment-change and no-treatment-change groups. Further, we compared the performances of RNNs to 5 machine learning algorithms including Naive Bayes, K-nearest Neighbor, Support Vector Machine for classification, Random forest, and Logistic Regression. Results Our results suggested that, overall, RNNs outperformed traditional machine learning algorithms, and LSTM_Bi showed the best performance among the RNNs in terms of accuracy, precision, recall, and F1 score. In addition, pretrained word embedding can improve the accuracy of LSTM by 3.4% and reduce the training time by more than 60%. Discussion and Conclusion NLP and RNN-based text mining solutions have demonstrated advantages in information retrieval and document classification tasks for unstructured clinical progress notes.


Author(s):  
Dr. K. Suresh

The current way of checking answer scripts is hectic for the college. They need to manually check the answers and allocate the marks to the students. Our proposed system uses Machine Learning and Natural Language Processing techniques to beat this. Machine learning algorithms use computational methods to find out directly from data without hopping on predetermined rules. NLP algorithms identify specific entities within the text, explore for key elements during a document, run a contextual search for synonyms and detect misspelled words or similar entries, and more. Our algorithm performs similarity checking and also the number of words associated with the question exactly matched between two documents. It also checks whether the grammar is correctly used or not within the student's answer. Our proposed system performs text extraction and evaluation of marks by applying Machine Learning and Natural Language Processing techniques.


2021 ◽  
Vol 10 (5) ◽  
pp. 2857-2865
Author(s):  
Moanda Diana Pholo ◽  
Yskandar Hamam ◽  
Abdel Baset Khalaf ◽  
Chunling Du

Available literature reports several lymphoma cases misdiagnosed as tuberculosis, especially in countries with a heavy TB burden. This frequent misdiagnosis is due to the fact that the two diseases can present with similar symptoms. The present study therefore aims to analyse and explore TB as well as lymphoma case reports using Natural Language Processing tools and evaluate the use of machine learning to differentiate between the two diseases. As a starting point in the study, case reports were collected for each disease using web scraping. Natural language processing tools and text clustering were then used to explore the created dataset. Finally, six machine learning algorithms were trained and tested on the collected data, which contained 765 lymphoma and 546 tuberculosis case reports. Each method was evaluated using various performance metrics. The results indicated that the multi-layer perceptron model achieved the best accuracy (93.1%), recall (91.9%) and precision score (93.7%), thus outperforming other algorithms in terms of correctly classifying the different case reports.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Mehedi Masud ◽  
Hesham Alhumyani ◽  
Sultan S. Alshamrani ◽  
Omar Cheikhrouhou ◽  
Saleh Ibrahim ◽  
...  

Malaria is a contagious disease that affects millions of lives every year. Traditional diagnosis of malaria in laboratory requires an experienced person and careful inspection to discriminate healthy and infected red blood cells (RBCs). It is also very time-consuming and may produce inaccurate reports due to human errors. Cognitive computing and deep learning algorithms simulate human intelligence to make better human decisions in applications like sentiment analysis, speech recognition, face detection, disease detection, and prediction. Due to the advancement of cognitive computing and machine learning techniques, they are now widely used to detect and predict early disease symptoms in healthcare field. With the early prediction results, healthcare professionals can provide better decisions for patient diagnosis and treatment. Machine learning algorithms also aid the humans to process huge and complex medical datasets and then analyze them into clinical insights. This paper looks for leveraging deep learning algorithms for detecting a deadly disease, malaria, for mobile healthcare solution of patients building an effective mobile system. The objective of this paper is to show how deep learning architecture such as convolutional neural network (CNN) which can be useful in real-time malaria detection effectively and accurately from input images and to reduce manual labor with a mobile application. To this end, we evaluate the performance of a custom CNN model using a cyclical stochastic gradient descent (SGD) optimizer with an automatic learning rate finder and obtain an accuracy of 97.30% in classifying healthy and infected cell images with a high degree of precision and sensitivity. This outcome of the paper will facilitate microscopy diagnosis of malaria to a mobile application so that reliability of the treatment and lack of medical expertise can be solved.


Author(s):  
Yashaswini S

To understand language, we need an understanding of the world around us. Language describes the world and provides symbols with which we represent meaning. Still, much knowledge about the world is so obvious that it is rarely explicitly stated. It is uncommon for people to state that chairs are usually on the floor and upright, and that you usually eat a cake from a plate on a table. Knowledge of such common facts provides the context within which people communicate with language. Therefore, to create practical systems that can interact with the world and communicate with people, we need to leverage such knowledge to interpret language in context. Scene generation can be used to achieve an ability to generate 3D scenes on basis of text description. A model capable of learning natural language semantics or interesting pattern to generate abstract idea behind scene composition is interesting [1].Scene generation from text involves several fields like NLP, artificial intelligence, computer vision and machine learning. This paper focuses on optimally arranging objects in a room with focus on the orientation of the objects with respect to the floor, wall and ceiling of a room along with textures. Our model suggest a novel framework which can be used as a tool to generate scene where anyone without 3D Modeling.


Sign in / Sign up

Export Citation Format

Share Document