Determination of Groundwater Potential Zone in Arid and Semi-Arid Regions: A review

Author(s):  
Omar Adil Mohammed ◽  
Khamis Naba Sayl
2020 ◽  
Vol 13 (22) ◽  
Author(s):  
Solomon Temidayo Owolabi ◽  
Kakaba Madi ◽  
Ahmed Mulakazi Kalumba ◽  
Israel Ropo Orimoloye

AbstractTheme unsuitability is noted to have inhibited the accuracy of groundwater potential zones (GWPZs) mapping approach, especially in a semi-arid environment where surface water supply is inadequate. This work, therefore presents a geoscience approach for mapping high-precision GWPZs peculiar to the semi-arid area, using Buffalo catchment, Eastern Cape, South Africa, as a case study. Maps of surficial-lithology, lineament-density, drainage-density, rainfall-distribution, normalized-difference-vegetation-index, topographic-wetness-index, land use/land cover, and land-surface-temperature were produced. These were overlaid based on analytical hierarchical process weightage prioritization at a constituency ratio of 0.087. The model categorizes GWPZs into the good (187 km2), moderate (338 km2), fair (406 km2), poor (185 km2), and very poor (121 km2) zones. The model validation using borehole yield through on the coefficient of determination (R2 = 0.901) and correlation (R = 0.949) indicates a significant replication of ground situation (p value < 0.001). The analysis corroboration shows that the groundwater is mainly hosted by a fractured aquifer where the GWPZs is either good (9.3 l/s) or moderate (5.5 l/s). The overall result indicates that the model approach is reliable and can be adopted for a reliable characterization of GWPZs in any semi-arid/arid environment.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2656 ◽  
Author(s):  
Javed Mallick ◽  
Roohul Abad Khan ◽  
Mohd Ahmed ◽  
Saeed Dhafer Alqadhi ◽  
Majed Alsubih ◽  
...  

Saudi Arabia’s arid and semi-arid regions suffer from water scarcity because of climatic constraints and rapid growth of domestic and industrial water uses. The growing demand for high-quality water supplies and to reduce the dependency on desalination creates an urgent need to explore groundwater resources as an alternative. The weighted overlay analysis method using the fuzzy-analytical hierarchy process (FAHP) multi-criteria decision making (MCDM) techniques combined with geoinformation technology was used in this study to explore the groundwater potential zones in the Itwad-Khamis watershed of Saudi Arabia. Twelve thematic layers were prepared and processed in a GIS setting to produce the groundwater potential zone map (GPZM). Subsequently, potential groundwater areas were delineated and drawn into five classes: very good potential, good potential, moderate potential, poor potential, and very poor potential. The estimated GWPZ (groundwater potential zones) was validated by analyzing the existing open wells distribution and the yield data of selected wells within the studied watershed. With this quality-based zoning, it was found that 82% of existing wells were located in a very good and good potential area. The statistical analysis showed that 14.6% and 28.8% of the total area were under very good and good, while 27.3% and 20.2% were accounted for the moderate and poor potential zone, respectively. To achieve sustainable groundwater management in the Aseer region, Saudi Arabia, this research provided a primary estimate and significant insights for local water managers and authorities by providing groundwater potential zone map.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 669
Author(s):  
Abid Sarwar ◽  
Sajid Rashid Ahmad ◽  
Muhammad Ishaq Asif Rehmani ◽  
Muhammad Asif Javid ◽  
Shazia Gulzar ◽  
...  

The changing climate and global warming have rendered existing surface water insufficient, which is projected to adversely influence the irrigated farming systems globally. Consequently, groundwater demand has increased significantly owing to increasing population and demand for plant-based foods especially in South Asia and Pakistan. This study aimed to determine the potential areas for groundwater use for agriculture sector development in the study area Lower Dir District. ArcGIS 10.4 was utilized for geospatial analysis, which is referred to as Multi Influencing Factor (MIF) methodology. Seven parameters including land cover, geology, soil, rainfall, underground faults (liniment) density, drainage density, and slope, were utilized for delineation purpose. Considering relative significance and influence of each parameter in the groundwater recharge rating and weightage was given and potential groundwater areas were classified into very high, high, good, and poor. The result of classification disclosed that the areas of 113.10, 659.38, 674.68, and 124.17 km2 had very high, high, good, and poor potential for groundwater agricultural uses, respectively. Field surveys for water table indicated groundwater potentiality, which was high for Kotkay and Lalqila union councils having shallow water table. However, groundwater potentiality was poor in Zimdara, Khal, and Talash, characterized with a very deep water table. Moreover, the study effectively revealed that remote sensing and GIS could be developed as potent tools for mapping potential sites for groundwater utilization. Furthermore, MIF technique could be a suitable approach for delineation of groundwater potential zone, which can be applied for further research in different areas.


2021 ◽  
Vol 5 (1) ◽  
pp. 34-44
Author(s):  
B. Pradeep Kumar ◽  
K. Raghu Babu ◽  
M. Rajasekhar ◽  
M. Ramachandra

Freshwater scarcity is a major issue in Rayalaseema region in Andhra Pradesh (India). Groundwater is the primary source of drinking and irrigation water in Anantapur district, Andhra Pradesh, India. Therefore, it is important to identify areas having groundwater potential; however, the current methods of groundwater exploration consume a lot of time and money. Analytic Hierarchy Process (AHP)-based spatial model is used to identify groundwater potential zones in Anantapur using remote sensing and GIS-based decision support system. Thematic layers considered in this study were geology, geomorphology, soils, land use land cover (LULC), lineament density (LD), drainage density (DD), slope, and rainfall. According to Saaty’s AHP, all these themes and individual features were weighted according to their relative importance in groundwater occurrence. Thematic layers were finally combined using ArcGIS to prepare a groundwater potential zone map. The high weighted value area was considered a groundwater prospecting region. Accordingly, the GWPZ map was classified into four categories: very good, good, moderate, and poor. The very good GWPZ area is 77.37 km2 (24.93%) of the total study area. The northeastern and southeastern sections of the study area, as well as some medium patches in the center and western regions, are covered by moderate GWPZs, which cover an area of 53.07 km2 (17.10%). However, the GWP in the study area’s central, southwestern, and northern portions is poor, encompassing an area of approximately 79.31 km2 (25.56%). Finally, RS and GIS techniques are highly effective and useful for identifying GWPZs.


Author(s):  
K Choudhary ◽  
M S Boori ◽  
A Kupriyanov

The main objective of this study was to detect groundwater availability for agriculture in the Orenburg, Russia. Remote sensing data (RS) and geographic information system (GIS) were used to locate potential zones for groundwater in Orenburg. Diverse maps such as a base map, geomorphological, geological structural, lithology, drainage, slope, land use/cover and groundwater potential zone were prepared using the satellite remote sensing data, ground truth data, and secondary data. ArcGIS software was utilized to manipulate these data sets. The groundwater availability of the study was classified into different classes such as very high, high, moderate, low and very low based on its hydro-geomorphological conditions. The land use/cover map was prepared using a digital classification technique with the limited ground truth for mapping irrigated areas in the Orenburg, Russia.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2630 ◽  
Author(s):  
Recep Çelik

The Tigris River Batman-Hasankeyf region sub-basin drainage area is in the Upper Tigris basin and lies between the area where the Batman stream joins the river and the Yanarsu stream flows into the river. Intensive agricultural activities are carried out in this region, and irrigation is generally obtained from groundwater just as it moves away from the riverfront. The study area is a valuable basin for both Turkey and the Middle East. In this study, the effectiveness of the Geographic Information System (GIS)-based multicriteria decision-making (MCDM) analytic hierarchy process (AHP) as a spatial prediction tool was utilized in exploring the groundwater potential of the drainage area. In the analysis, eight hydrological and hydrogeological criteria were considered as influencing factors, namely, geomorphology, geology, rainfall, drainage density, slope, lineament density, land use, and soil properties. The weights of these criteria were determined through the AHP method; the Arc GIS 10.2.2 program and its submodules were used. The major findings of the study were that groundwater-potential index values of the basin were derived. Groundwater-potential-zone evaluation of the basin was obtained as follows: very poor (19%), poor (17%), moderate (34%), good (17%), very good (13%); and groundwater potential zone (GWPZ) maps of the sub-basin were created.


2020 ◽  
Vol 13 (15) ◽  
Author(s):  
Subbarayan Saravanan ◽  
Thiyagarajan Saranya ◽  
Jesudasan Jacinth Jennifer ◽  
Leelambar Singh ◽  
Ayyakkannu Selvaraj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document