Impact of On-Die Inductance from top metal power delivery routings in HSIO & Ethernet

Author(s):  
Siddhesh Arote ◽  
Manjunath Jayasimha
Keyword(s):  
2011 ◽  
Vol 131 (4) ◽  
pp. 288-294 ◽  
Author(s):  
Tatsuya Furukawa ◽  
Keita Akagi ◽  
Hisao Fukumoto ◽  
Hideaki Itoh ◽  
Hiroshi Wakuya ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liane Bernstein ◽  
Alexander Sludds ◽  
Ryan Hamerly ◽  
Vivienne Sze ◽  
Joel Emer ◽  
...  

AbstractAs deep neural network (DNN) models grow ever-larger, they can achieve higher accuracy and solve more complex problems. This trend has been enabled by an increase in available compute power; however, efforts to continue to scale electronic processors are impeded by the costs of communication, thermal management, power delivery and clocking. To improve scalability, we propose a digital optical neural network (DONN) with intralayer optical interconnects and reconfigurable input values. The path-length-independence of optical energy consumption enables information locality between a transmitter and a large number of arbitrarily arranged receivers, which allows greater flexibility in architecture design to circumvent scaling limitations. In a proof-of-concept experiment, we demonstrate optical multicast in the classification of 500 MNIST images with a 3-layer, fully-connected network. We also analyze the energy consumption of the DONN and find that digital optical data transfer is beneficial over electronics when the spacing of computational units is on the order of $$>10\,\upmu $$ > 10 μ m.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2160
Author(s):  
Arthur K. Barnes ◽  
Jose E. Tabarez ◽  
Adam Mate ◽  
Russell W. Bent

Protecting inverter-interfaced microgrids is challenging as conventional time-overcurrent protection becomes unusable due to the lack of fault current. There is a great need for novel protective relaying methods that enable the application of protection coordination on microgrids, thereby allowing for microgrids with larger areas and numbers of loads while not compromising reliable power delivery. Tools for modeling and analyzing such microgrids under fault conditions are necessary in order to help design such protective relaying and operate microgrids in a configuration that can be protected, though there is currently a lack of tools applicable to inverter-interfaced microgrids. This paper introduces the concept of applying an optimization problem formulation to the topic of inverter-interfaced microgrid fault modeling, and discusses how it can be employed both for simulating short-circuits and as a set of constraints for optimal microgrid operation to ensure protective device coordination.


2021 ◽  
Vol 11 (14) ◽  
pp. 6635
Author(s):  
Ayan Barbora ◽  
Shailendra Rajput ◽  
Konstantin Komoshvili ◽  
Jacob Levitan ◽  
Asher Yahalom ◽  
...  

Non-ionizing millimeter-waves (MMW) interact with cells in a variety of ways. Here the inhibited cell division effect was investigated using 85–105 GHz MMW irradiation within the International Commission on Non-Ionizing Radiation Protection (ICNIRP) non-thermal 20 mW/cm2 safety standards. Irradiation using a power density of about 1.0 mW/cm2 SAR over 5–6 h on 50 cells/μL samples of Saccharomyces cerevisiae model organism resulted in 62% growth rate reduction compared to the control (sham). The effect was specific for 85–105 GHz range and was energy- and cell density-dependent. Irradiation of wild type and Δrad52 (DNA damage repair gene) deleted cells presented no differences of colony growth profiles indicating non-thermal MMW treatment does not cause permanent genetic alterations. Dose versus response relations studied using a standard horn antenna (~1.0 mW/cm2) and compared to that of a compact waveguide (17.17 mW/cm2) for increased power delivery resulted in complete termination of cell division via non-thermal processes supported by temperature rise measurements. We have shown that non-thermal MMW radiation has potential for future use in treatment of yeast related diseases and other targeted biomedical outcomes.


Sign in / Sign up

Export Citation Format

Share Document