A Novel Spire Clip-type Pogo Connector Design with High Electrical and Thermal Reliability

Author(s):  
Keunwoo Kim ◽  
Keeyoung Son ◽  
Seokwoo Hong ◽  
Joungho Kim ◽  
Jinyoung Kim
Keyword(s):  
2004 ◽  
Vol T114 ◽  
pp. 202-204
Author(s):  
SooJeong Park ◽  
Kook Chul Moon ◽  
MoonYoung Shin ◽  
MinKoo Han

Author(s):  
Ryo Kato ◽  
Masatoshi Okuda ◽  
Suguru Hashidate ◽  
Takamichi Mori ◽  
Junichiro Minami ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shafiq Ishak ◽  
Soumen Mandal ◽  
Han-Seung Lee ◽  
Jitendra Kumar Singh

AbstractLauric acid (LA) has been recommended as economic, eco-friendly, and commercially viable materials to be used as phase change materials (PCMs). Nevertheless, there is lack of optimized parameters to produce microencapsulated PCMs with good performance. In this study, different amounts of LA have been chosen as core materials while tetraethyl orthosilicate (TEOS) as the precursor solution to form silicon dioxide (SiO2) shell. The pH of precursor solution was kept at 2.5 for all composition of microencapsulated LA. The synthesized microencapsulated LA/SiO2 has been characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The SEM and TEM confirm the microencapsulation of LA with SiO2. Thermogravimetric analysis (TGA) revealed better thermal stability of microencapsulated LA/SiO2 compared to pure LA. PCM with 50% LA i.e. LAPC-6 exhibited the highest encapsulation efficiency (96.50%) and encapsulation ratio (96.15%) through Differential scanning calorimetry (DSC) as well as good thermal reliability even after 30th cycle of heating and cooling process.


2019 ◽  
Vol 13 (2) ◽  
pp. 129-133
Author(s):  
Gennadiy Farenyuk

The paper presents the basic methodical principles for the time analysis of the variations of envelope structures’ thermal insulation properties and for the substantiation of the thermal reliability criterion, which should allow the analysis of the actual parameters of heat losses during the operation of buildings. In the paper, the state of the envelope structures thermal failure, the concept of building thermal envelope thermal reliability and the principles of its rating are defined. The physical meaning and basic criterion of the envelope structure thermal reliability are formulated. The application of the thermal reliability criterion allows determining the probable variations in the thermal insulation properties during the building operation and, accordingly, the changes of the building energy performance over time.


Author(s):  
Tiantao Lu ◽  
Ankur Srivastava

This paper presents an electrical-thermal-reliability co-design technique for TSV-based 3D-ICs. Although TSV-based 3D-IC shows significant electrical performance improvement compared to traditional 2D circuit, researchers have reported strong electromigration (EM) in TSVs, which is induced by the thermal mechanical stress and the local temperature hotspot. We argue that rather than addressing 3D-IC’s EM issue after the IC designing phase, the designer should be aware of the circuit’s thermal and EM properties during the IC designing phase. For example, one should be aware that the TSVs establish vertical heat conduction path thus changing the chip’s thermal profile and also produce significant thermal mechanical stress to the nearby TSVs, which deteriorates other TSV’s EM reliability. Therefore, the number and location of TSVs play a crucial role in deciding 3D-IC’s electrical performance, changing its thermal profile, and affecting its EM-reliability. We investigate the TSV placement problem, in order to improve 3D-IC’s electrical performance and enhance its thermal-mechanical reliability. We derive and validate simple but accurate thermal and EM models for 3D-IC, which replace the current employed time-consuming finite-element-method (FEM) based simulation. Based on these models, we propose a systematic optimization flow to solve this TSV placement problem. Results show that compared to conventional performance-centered technique, our design methodology achieves 3.24x longer EM-lifetime, with only 1% performance degradation.


2012 ◽  
Vol 258 (12) ◽  
pp. 5001-5004 ◽  
Author(s):  
Ming-Jhang Wu ◽  
Hua-Chiang Wen ◽  
Tun-Yuan Chiang ◽  
Chien-Huang Tsai ◽  
Wen-Kuang Hsu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document