Experiment of Routing for Mobile Cognitive Radio Base Station (MCRBS)

Author(s):  
Luthfi Fauzi ◽  
Khoirul Anwar ◽  
Hafidudin
Keyword(s):  
Author(s):  
Arvind Viswanathan ◽  
Garimella Rama Murthy ◽  
Naveen Chilamkurti

In the unlicensed band, the notion of primary user and secondary user (To implement cognitive radio) is not explicit. By dynamic priority assignment the authors propose to implement cognitive radio in the unlicensed band. In time critical events, the data which is most important, has to be given the time slots. Wireless Sensor nodes in the authors’ case are considered to be mobile, and hence make it difficult to prioritize one over another. A node may be out of the reach of the cluster head or base station by the time it is allotted a time slot and hence mobility is a constraint. With the data changing dynamically and factors such as energy and mobility, which are major constraints, assigning priority to the nodes becomes difficult. In this paper, the authors have discussed about how Wireless Sensor Networks are able to allocate priorities to nodes in the unlicensed band with multiple parameters being posed. They have done simulations on NS-2 and have shown the implementation results.


2008 ◽  
Vol E91-B (1) ◽  
pp. 102-109 ◽  
Author(s):  
T. UEDA ◽  
K. TAKEUCHI ◽  
S. KANEKO ◽  
S. NOMURA ◽  
K. SUGIYAMA

Information ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 500
Author(s):  
Kun Tang ◽  
Shaowei Liao

In this paper, we investigate a relay-assisted cooperative spectrum sharing for the considered non-orthogonal multiple access (NOMA) scheme in cognitive radio networks, where the relay node assists the base station (BS) to transmit the superimposed composite signal to two receivers by utilizing an amplified-and-forward (AF) technique with simultaneous wireless information and power transfer (SWIPT). The exact expressions for outage probabilities of two receivers are derived in closed forms. Moreover, a joint optimization of power allocation and the proportion of information splitting for energy harvesting is proposed in terms of energy efficiency (EE) maximization under required data reliability. Simulation results validate the analytical results since the analytical results match well with simulation results and demonstrate the performance advantages of the proposed scheme over other schemes and direct transmission.


Author(s):  
Mikio Kataoka ◽  
Takashi Ishikawa ◽  
Seishi Hanaoka ◽  
Masashi Yano ◽  
Shinji Nishimura
Keyword(s):  

2013 ◽  
Vol 479-480 ◽  
pp. 1027-1031
Author(s):  
Man Man Guo ◽  
Yun Xue Liu ◽  
Wen Qiang Fan

Spectrum sensing is a crucial issue in cognitive radio networks for primary user detection. Cooperative sensing based on energy detection in the cognitive radio network with multiple antennas base-station is considered in this letter. To improve the sensing performance, we investigate hybrid fusion of the observed energies from the base-station and decisions (1bit, hard information) from different cognitive radio (CR) users around the base-station. Further, we present an optimized scheme where the global detection probability can be maximized according to the Neyman-Pearson criterion. Finally the impact of the change of parameters (Signal to Noise Ratio and number of CR users) in the optimized scheme is analyzed. Numerical simulations and extensive analysis confirm that hybrid fusion base on the optimized scheme is a good choice, also, Signal to Noise Ratio (SNR) and number of CR users does not have influence on the optimized scheme


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6741
Author(s):  
Mohamad Rida Mortada ◽  
Abbass Nasser ◽  
Ali Mansour ◽  
Koffi-Clément Yao

In cognitive radio wireless sensor networks (CRSN), the nodes act as secondary users. Therefore, they can access a channel whenever its primary user (PU) is absent. Thus, the nodes are assumed to be equipped with a spectrum sensing (SS) module to monitor the PU activity. In this manuscript, we focus on a clustered CRSN, where the cluster head (CH) performs SS, gathers the data, and sends it toward a central base station by adopting an ad hoc topology with in-network data aggregation (IDA) capability. In such networks, when the number of clusters increases, the consumed energy by the data transmission decreases, while the total consumed energy of SS increases, since more CHs need to perform SS before transmitting. The effect of IDA on CRSN performance is investigated in this manuscript. To select the best number of clusters, a study is derived aiming to extend the network lifespan, taking the SS requirements, the IDA effect, and the energy consumed by both SS and transmission into consideration. Furthermore, the collision rate between primary and secondary transmissions and the network latency are theoretically derived. Numerical results corroborate the efficiency of IDA to extend the network lifespan and minimize both the collision rate and the network latency.


2019 ◽  
Vol 8 (4) ◽  
pp. 9483-9486

The WiMAX (Worldwide Interoperability Microwave Access) is important in communication systems. Mobility is also important in WiMax to achieve high speed in data exchange over the medium. During the exchange of data handoff may be occurred.This paper is focused on handoff in WiMAX and MS (Mobile Station). The Handover Management Algorithm is used to avoid handoff in addition to improve the handover interruption time and to decrease the signaling transaction during the handover procedure we used Global Position System (GPS) to perform handoff faster. GPS has been introduced in this paper to find the position of the MS and BS then the MS will automatically choose BS by routing. We developed a new algorithm to improve the handoff interruption by introducing Time Division Multiple Access (TDMA).The MS finds its position using GPS and find the distance to the SBS (Source Base Station) and nearby BSs. In the next step,MS selects the target BS based on distance. Moreover we combine Handover Management Algorithm (HMA) with Cognitive radio networks (CRNs) for which are the way out for the trouble of underutilizing the license spectrum for which there are more needs in the final pair of decades. The congestion of the wireless spectrum has triggered a stringent contest for panic network resources.


2021 ◽  
Author(s):  
Hamad Yahya ◽  
Emad Alsusa ◽  
Arafat Al-Dweik

<div>The synergy of nonorthogonal multiple access (NOMA) and cognitive radio (CR) can provide efficient spectrum utilization for future wireless networks and enable supporting heterogeneous quality of service (QoS) requirements. In this context, this article aims at evaluating the throughput of a downlink CR-NOMA network where the secondary user (SU) data is opportunistically multiplexed with the primary user (PU) data using power-domain NOMA. The data multiplexing process is constrained by the PU QoS requirements. The multiplexing process can be considered seamless with respect to the PU because its receiver design will generally remain unchanged. Moreover, we consider the case where the SU detects its own data by blindly identifying the adopted transmission mode (TM) at the base station, which can be PU orthogonal multiple access PU-OMA, SU-OMA, PU/SU-NOMA, and no transmission. Consequently, the network can be classified as a hybrid underlay-interweave. The detection process is considered blind because the SU does not receive side information about the adopted TM. The obtained analytical results corroborated by Monte Carlo simulation results show that the proposed CR-NOMA network can provide substantial throughput improvement over conventional NOMA networks, particularly at low signal-to-noise ratios (SNRs) because the unutilized PU spectrum can be used by the SU. Moreover, in good channel conditions the PU can tolerate some interference from the SU, which may improve the channel utilization significantly. </div><div><br></div>


Sign in / Sign up

Export Citation Format

Share Document