scholarly journals Hybrid Cognitive-Radio NOMA with Blind Transmission Mode Identification and BER Constraints

Author(s):  
Hamad Yahya ◽  
Emad Alsusa ◽  
Arafat Al-Dweik

<div>The synergy of nonorthogonal multiple access (NOMA) and cognitive radio (CR) can provide efficient spectrum utilization for future wireless networks and enable supporting heterogeneous quality of service (QoS) requirements. In this context, this article aims at evaluating the throughput of a downlink CR-NOMA network where the secondary user (SU) data is opportunistically multiplexed with the primary user (PU) data using power-domain NOMA. The data multiplexing process is constrained by the PU QoS requirements. The multiplexing process can be considered seamless with respect to the PU because its receiver design will generally remain unchanged. Moreover, we consider the case where the SU detects its own data by blindly identifying the adopted transmission mode (TM) at the base station, which can be PU orthogonal multiple access PU-OMA, SU-OMA, PU/SU-NOMA, and no transmission. Consequently, the network can be classified as a hybrid underlay-interweave. The detection process is considered blind because the SU does not receive side information about the adopted TM. The obtained analytical results corroborated by Monte Carlo simulation results show that the proposed CR-NOMA network can provide substantial throughput improvement over conventional NOMA networks, particularly at low signal-to-noise ratios (SNRs) because the unutilized PU spectrum can be used by the SU. Moreover, in good channel conditions the PU can tolerate some interference from the SU, which may improve the channel utilization significantly. </div><div><br></div>

2021 ◽  
Author(s):  
Hamad Yahya ◽  
Emad Alsusa ◽  
Arafat Al-Dweik

<div>The synergy of nonorthogonal multiple access (NOMA) and cognitive radio (CR) can provide efficient spectrum utilization for future wireless networks and enable supporting heterogeneous quality of service (QoS) requirements. In this context, this article aims at evaluating the throughput of a downlink CR-NOMA network where the secondary user (SU) data is opportunistically multiplexed with the primary user (PU) data using power-domain NOMA. The data multiplexing process is constrained by the PU QoS requirements. The multiplexing process can be considered seamless with respect to the PU because its receiver design will generally remain unchanged. Moreover, we consider the case where the SU detects its own data by blindly identifying the adopted transmission mode (TM) at the base station, which can be PU orthogonal multiple access PU-OMA, SU-OMA, PU/SU-NOMA, and no transmission. Consequently, the network can be classified as a hybrid underlay-interweave. The detection process is considered blind because the SU does not receive side information about the adopted TM. The obtained analytical results corroborated by Monte Carlo simulation results show that the proposed CR-NOMA network can provide substantial throughput improvement over conventional NOMA networks, particularly at low signal-to-noise ratios (SNRs) because the unutilized PU spectrum can be used by the SU. Moreover, in good channel conditions the PU can tolerate some interference from the SU, which may improve the channel utilization significantly. </div><div><br></div>


2020 ◽  
Vol 9 (3) ◽  
pp. 1046-1054
Author(s):  
Thi-Anh Hoang ◽  
Chi-Bao Le ◽  
Dinh-Thuan Do

The power domain non-orthogonal multiple access (NOMA) technique introduces one of the fundamental characteristics and it exhibits the possibility of users to decode the messages of the other paired users on the same resources. In cognitive radio inspired NOMA (CR-NOMA), the base station (BS) has to serve untrusted users or users with different security clearance. This phenomenon raises a security threat particularly in such CR-NOMA. This paper develops a tractable analysis framework to evaluate the security performance of cooperative non-orthogonal multiple access (NOMA) in cognitive networks, where relay is able to serve two far NOMA users in the presence of external eavesdropper. In particular, we study the secrecy outage probability in a two-user NOMA system. This situation happens in practical the BS is pairing a legitimate user with another untrusted user. Main reason is that the non-uniform distribution in terms of trusted and untrusted users in the cell. By performing numerical results demonstrate the performance improvements of the proposed NOMA scheme in comparison to that of several situations in terms of different parameters. Furthermore, the security performance of NOMA is shown to verify the derived expressions.


Author(s):  
Arvind Viswanathan ◽  
Garimella Rama Murthy ◽  
Naveen Chilamkurti

In the unlicensed band, the notion of primary user and secondary user (To implement cognitive radio) is not explicit. By dynamic priority assignment the authors propose to implement cognitive radio in the unlicensed band. In time critical events, the data which is most important, has to be given the time slots. Wireless Sensor nodes in the authors’ case are considered to be mobile, and hence make it difficult to prioritize one over another. A node may be out of the reach of the cluster head or base station by the time it is allotted a time slot and hence mobility is a constraint. With the data changing dynamically and factors such as energy and mobility, which are major constraints, assigning priority to the nodes becomes difficult. In this paper, the authors have discussed about how Wireless Sensor Networks are able to allocate priorities to nodes in the unlicensed band with multiple parameters being posed. They have done simulations on NS-2 and have shown the implementation results.


2020 ◽  
Vol 12 (4) ◽  
pp. 575-583
Author(s):  
V. Sharma ◽  
S. Joshi

Cognitive Radio is a boon to efficient utilization of spectrum to meet the demand of next generation. Spectrum Sensing (SS) is an active research area, essential to meet the requirement of efficient spectrum utilization as it detects the vacant bands. This paper develops a Hybrid Blind Detection (HBD) technique for cooperative spectrum sensing which combines the Energy Detector (ED) and the Anti-Eigen Value Detection (AVD) techniques together to enhance the detection accuracy of a cognitive radio. Collaboration among the cognitive users is achieved to reduce the error and hard fusion based detection is implemented to detect the existence of primary user. The detection accuracy of the design is evaluated with respect to detection probabilities and the results are examined for improvements with the traditional two stage detection techniques. Fusion rules for the cooperative environment are implemented and compared to detect majority rule suitable for the proposed design.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5467
Author(s):  
Zhihua Lin ◽  
Shihua Cao ◽  
Jianqing Li

Non-orthogonal multiple access (NOMA) utilizes power domain multiplexing to improve spectrum efficiency compared with orthogonal multiple access (OMA). In the Internet of Things (IoT) uplink NOMA networks, if the channel between the far-end node and the base station is in deep fading, allocating larger transmitting power for this node cannot achieve higher spectrum efficiency and overall system throughput. Relay cooperative communication reduces the transmitting power at the far-end node but leads to extra energy expenditure at the relay node. Fortunately, simultaneous wireless information and power transfer (SWIPT) is advocated in energy-constrained IoT networks to save energy consumption. However, early works all focus on energy harvesting (EH) from one source node or one dedicated power supply station. In this paper, we propose a time switching based wireless powered relay transmission model with uplink NOMA where our EH technique can harvest energy from two simultaneously transmitting nodes. More importantly, by optimizing relay position more energy is harvested from the near-end node at the relay and relay signal attenuation to the destination is reduced as well. Furthermore, the closed-form expressions of outage probability and overall system throughput are derived, and numerical results prove that NOMA in our EH scheme achieves better performance compared to the traditional EH scheme and OMA by optimizing the position of the relay node, time switching factor and so on.


2021 ◽  
Vol 10 (2) ◽  
pp. 785-792
Author(s):  
Anh-Tu Le ◽  
Minh-Sang Van Nguyen ◽  
Dinh-Thuan Do

Power domain based multiple access scheme is introduced in this paper, namely Non-orthogonal multiple-access (NOMA). We deploy a wireless network using NOMA together with a wireless power transfer (WPT) scheme for dedicated user over Nakagami-$m$ fading channel. When combined, these promising techniques (NOMA and WPT) improve the system performance in term of ergodic performance at reasonable coefficient of harvested power. However, fixed power allocation factors for each NOMA user can be adjusted at the base station and it further provide performance improvement. We design a new signal frame to deploy a NOMA scheme in WPT which adopts a linear energy harvesting model. The ergodic capacity in such a NOMA network and power allocation factors can be updated frequently in order to achieve a fair distribution among NOMA users. The exact expressions of ergodic capacity for each user is derived. The simulation results show that an agreement between analytic performance and Monte-Carlo simulation can be achieved. 


2020 ◽  
Vol 10 (10) ◽  
pp. 3630 ◽  
Author(s):  
Carla E. Garcia ◽  
Mario R. Camana ◽  
Insoo Koo

Security is considered a critical issue in the deployment of 5G networks because of the vulnerability of information that can be intercepted by eavesdroppers in wireless transmission environments. Thus, physical layer security has emerged as an alternative for the secure enabling of 5G technologies and for tackling this security issue. In this paper, we study the secrecy energy efficiency (SEE) in a downlink underlying cognitive radio (CR)—non-orthogonal multiple access (NOMA) system with a cooperative relay. The system has an energy-harvesting (EH) user and an eavesdropper, where the transmitter provides direct communication with a close secondary user and a distant secondary user via the relay. Our objective is to maximize the SEE of the CR-NOMA system under the constraints of a minimum information rate for the secondary users, a minimum amount of energy harvested by the EH user, and maximum power availability at the transmitter and the relay that still prevents them from causing unacceptable interference with the primary user. The proposed solution to maximize the SEE is based on the low-computational—complexity particle swarm optimization (PSO) algorithm. For validation purposes, we compare the optimization outcomes obtained by the PSO algorithm with the optimal exhaustive search method. Furthermore, we compare the performance of our proposed CR-NOMA scheme with the conventional orthogonal multiple access (OMA) scheme.


Sign in / Sign up

Export Citation Format

Share Document