A design tool for modelling and sizing of energy production/storage home system

Author(s):  
Luca Paciello ◽  
Anna Pedale ◽  
David Scaradozzi ◽  
Giuseppe Conte
Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4271
Author(s):  
Lucia Cattani ◽  
Paolo Cattani ◽  
Anna Magrini

Photovoltaic panel efficiency can be heavily affected by soiling, due to dust and other airborne particles, which can determine up to 50% of energy production loss. Generally, it is possible to reduce that impact by means of periodic cleaning, and one of the most efficient cleaning solutions is the use of demineralized water. As pauperization of traditional water sources is increasing, new technologies have been developed to obtain the needed water amount. Water extracted from the air using air to water generator (AWG) technology appears to be particularly suitable for panel cleaning, but its effective employment presents issues related to model selection, determining system size, and energy efficiency. To overcome such issues, the authors proposed a method to choose an AWG system for panel cleaning and to determine its size accordingly, based on a cleaning time optimization procedure and tailored to AWG peculiarities, with an aim to maximize energy production. In order to determine the energy loss due to soiling, a simplified semiempirical model (i.e., the DIrt method) was developed as well. The methodology, which also allows for energy saving due to an optimal cleaning frequency, was applied to a case study. The results show that the choice of the most suitable AWG model could prevent 83% of energy loss related to soling. These methods are the first example of a design tool for panel cleaning planning involving AWG technology.


2018 ◽  
Author(s):  
Pietro Bortolotti ◽  
Abinhav Kapila ◽  
Carlo L. Bottasso

Abstract. The size of wind turbines has been steadily growing in the pursuit of a lower cost of energy by an increased wind capture. In this trend, the vast majority of wind turbine rotors has been designed based on the conventional three-bladed upwind concept. This paper aims at assessing the optimality of this configuration with respect to a three-bladed downwind design, with and without an actively controlled variable coning used to reduce the cantilever loading of the blades. A 10 MW wind turbine is used for the comparison of the various design solutions, which are obtained by an automated comprehensive aerostructural design tool. Results show that, for this turbine size, downwind rotors lead to blade mass and cost reductions of 6 % and 2 %, respectively, compared to equivalent upwind configurations. Due to a more favorable rotor attitude, the annual energy production of downwind rotors may also slightly increase in complex terrain conditions characterized by a wind upflow, leading to an overall reduction in the cost of energy. However, in more standard operating conditions, upwind rotors return the lowest cost of energy. Finally, active coning is effective in alleviating loads by reducing both blade mass and cost, but these potential benefits are negated by an increased system complexity and reduced energy production. In summary, a conventional design appears difficult to beat even at these turbine sizes, although a downwind non-aligned configuration might result in an interesting alternative.


Author(s):  
W.A. Jacob ◽  
R. Hertsens ◽  
A. Van Bogaert ◽  
M. De Smet

In the past most studies of the control of energy metabolism focus on the role of the phosphorylation potential ATP/ADP.Pi on the regulation of respiration. Studies using NMR techniques have demonstrated that the concentrations of these compounds for oxidation phosphorylation do not change appreciably throughout the cardiac cycle and during increases in cardiac work. Hence regulation of energy production by calcium ions, present in the mitochondrial matrix, has been the object of a number of recent studies.Three exclusively intramitochondnal dehydrogenases are key enzymes for the regulation of oxidative metabolism. They are activated by calcium ions in the low micromolar range. Since, however, earlier estimates of the intramitochondnal calcium, based on equilibrium thermodynamic considerations, were in the millimolar range, a physiological correlation was not evident. The introduction of calcium-sensitive probes fura-2 and indo-1 made monitoring of free calcium during changing energy metabolism possible. These studies were performed on isolated mitochondria and extrapolation to the in vivo situation is more or less speculative.


PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


Author(s):  
Nur Indrianti ◽  
Devika Kumala ◽  
Tri Wibawa

Increasing awareness of the importance of services has given rise to the concept of product-service system where goods and services are sold as an integrated package to customers. On the other hand, the emerging sustainability concept has escalated the demand for sustainability for industries. Consequently, it is necessary to build strategies that lead the company to achieve sustainability goals while keeping competitiveness. Drawing on the necessity service and sustainability concept in the quality improvement of the product-service system, this study aims to develop a systematic design tool by filling the gap to the previous studies. We used Quality Function Deployment (QFD) approach by considering customer requirements (VoC) and stakeholder requirements (VoSt), instead of VoC only, based on the service and sustainability dimensions. We refer to the proposed QFD approach as QFDSPS. We introduce service productivity index (SPI) to measure the performance of the system. Thus, in the proposed methodology, the strategies for quality improvement were defined as subject to VoC, VoSt, and SPI. The methodology was implemented in a Javanese restaurant which meets the characteristics of a product-service system. The result shows that the proposed method can be implemented. The implications due to the implementation of the method are also discussed.


2018 ◽  
Vol 11 (2) ◽  
pp. 94-102 ◽  
Author(s):  
A. G. Filimonov ◽  
N. D. Chichirova ◽  
A. A. Chichirov ◽  
A. A. Filimonovа

Energy generation, along with other sectors of Russia’s economy, is on the cusp of the era of digital transformation. Modern IT solutions ensure the transition of industrial enterprises from automation and computerization, which used to be the targets of the second half of the last century, to digital enterprise concept 4.0. The international record of technological and structural solutions in digitization may be used in Russia’s energy sector to the full extent. Specifics of implementation of such systems in different countries are only determined by the level of economic development of each particular state and the attitude of public authorities as related to the necessity of creating conditions for implementation of the same. It is shown that a strong legislative framework is created in Russia for transition to the digital economy, with research and applied developments available that are up to the international level. The following digital economy elements may be used today at enterprises for production of electrical and thermal energy: — dealing with large amounts of data (including operations exercised via cloud services and distributed data bases); — development of small scale distributed generation and its dispatching; — implementation of smart elements in both electric power and heat supply networks; — development of production process automation systems, remote monitoring and predictive analytics; 3D-modeling of parts and elements; real time mathematic simulation with feedback in the form of control actions; — creating centres for analytical processing of statistic data and accounting in financial and economic activities with business analytics functions, with expansion of communication networks and computing capacities. Examples are presented for implementation of smart systems in energy production and distribution. It is stated in the paper that state-of art information technologies are currently being implemented in Russia, new unique digital transformation projects are being launched in major energy companies. Yet, what is required is large-scale and thorough digitization and controllable energy production system as a multi-factor business process will provide the optimum combination of efficient economic activities, reliability and safety of power supply.


Sign in / Sign up

Export Citation Format

Share Document