Refined Calculation of the Influence Coefficient from the Changes difference in Dielectric Constant from the Operating Conditions of the Electromagnetic Field Sensors

Author(s):  
Svetlana Kolmogorova ◽  
Sergey Biryukov ◽  
Dmitriy Baranov ◽  
Arkadiy Kolmogorov
2019 ◽  
Vol 298 ◽  
pp. 00009
Author(s):  
M.S. Ostapenko ◽  
M.A. Popova ◽  
A.M. Tveryakov

In this paper, we evaluate the method of finding the relative error of gas flow meters taking into account the influence coefficients. A literature analysis was carried out, which showed that flow meters are used at oil and gas enterprises, which show its metrological characteristic, showing specific values of gas flow in operating conditions. Various types of gas flow meters are considered, with a description of the quality indicators of the devices. An additional error was investigated depending on changes in operating conditions. The calculations of the relative error of the meter taking into account the limiting values of the additional errors indicated in the technical documentation, as well as calculations taking into account the coefficients of influence under operating conditions. Based on the obtained values of the influence coefficients, graphs were constructed on which the effect of temperature and pressure on the error was determined. The article provides tabular values of the influence coefficients for petroleum gas, a conclusion is drawn on the applicability of this method.Oil and gas industry have a great influence on development of national economy in our country. Oil and gas have a leading position in energy industry and they are more effective and energy-intense in comparison with other natural substances.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Almudena Vega ◽  
Roque Corral

This paper numerically investigates the correlation between the so-called unsteady loading parameter (ULP), derived in Part I of the corresponding paper, and the unsteady aerodynamics of oscillating airfoils at low reduced frequency with special emphasis on the work-per-cycle curves. Simulations using a frequency-domain linearized Navier–Stokes solver have been carried out on rows of a low-pressure turbine airfoil section, the NACA65 section, and a flat plate, to show the correlation between the actual value of the ULP and the flutter characteristics, for different airfoils, operating conditions, and mode shapes. Both the traveling wave and influence coefficient formulations of the problem are used in combination to increase the understanding of the ULP influence in different aspects of the unsteady flow field. It is concluded that, for a blade vibrating in a prescribed motion at design conditions, the ULP can quantitatively predict the effect of unsteady loading variations due to changes in both the incidence and the mode shape on the work-per-cycle curves. It is also proved that the unsteady loading parameter can be used to qualitatively compare the flutter characteristics of different airfoils.


2016 ◽  
Vol 113 (36) ◽  
pp. 9995-10000 ◽  
Author(s):  
Qi Li ◽  
Feihua Liu ◽  
Tiannan Yang ◽  
Matthew R. Gadinski ◽  
Guangzu Zhang ◽  
...  

The demand for a new generation of high-temperature dielectric materials toward capacitive energy storage has been driven by the rise of high-power applications such as electric vehicles, aircraft, and pulsed power systems where the power electronics are exposed to elevated temperatures. Polymer dielectrics are characterized by being lightweight, and their scalability, mechanical flexibility, high dielectric strength, and great reliability, but they are limited to relatively low operating temperatures. The existing polymer nanocomposite-based dielectrics with a limited energy density at high temperatures also present a major barrier to achieving significant reductions in size and weight of energy devices. Here we report the sandwich structures as an efficient route to high-temperature dielectric polymer nanocomposites that simultaneously possess high dielectric constant and low dielectric loss. In contrast to the conventional single-layer configuration, the rationally designed sandwich-structured polymer nanocomposites are capable of integrating the complementary properties of spatially organized multicomponents in a synergistic fashion to raise dielectric constant, and subsequently greatly improve discharged energy densities while retaining low loss and high charge–discharge efficiency at elevated temperatures. At 150 °C and 200 MV m−1, an operating condition toward electric vehicle applications, the sandwich-structured polymer nanocomposites outperform the state-of-the-art polymer-based dielectrics in terms of energy density, power density, charge–discharge efficiency, and cyclability. The excellent dielectric and capacitive properties of the polymer nanocomposites may pave a way for widespread applications in modern electronics and power modules where harsh operating conditions are present.


1994 ◽  
Vol 347 ◽  
Author(s):  
Georges Roussy ◽  
Jean-Marie Thiebaut ◽  
Kodjo Agbossou ◽  
Bernard Dichtel

ABSTRACTUsing the modulated scatterer technique allows us to measure the electromagnetic field in an applicator. The design of a new sensor modulated at 25 Hz is described. The operating conditions and the performance are presented.The sensor can be used for measuring high microwave electric fields up to 10 kV/m in an industrial applicator supplied by any industrial magnetron.


2014 ◽  
Vol 29 (18) ◽  
pp. 1450101
Author(s):  
M. A. Braun

The microscopic theory of the Casimir effect in the dielectric is studied in the framework when absorption is realized via a reservoir modeled by a set of oscillators with continuously distributed frequencies with the aim to see if the effects depend on the form of interaction with the reservoir. A simple case of the one-dimensional dielectric between two metallic plates is considered. Two possible models are investigated, the direct interaction of the electromagnetic field with the reservoir and indirect interaction via an intermediate oscillator imitating the atom. It is found that with the same dielectric constant the Casimir effect is different in these two cases, which implies that in the second model it cannot be entirely expressed via the dielectric constant as in the well-known Lifshitz formula.


2013 ◽  
Vol 62 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Yong Liao ◽  
Zhen-Nan Fan ◽  
Li Han ◽  
Li-Dan Xie

Abstract In order to research the losses and heat of damper bars thoroughly, a multislice moving electromagnetic field-circuit coupling FE model of tubular hydro-generator and a 3D temperature field FE model of the rotor are built respectively. The factors such as rotor motion and non-linearity of the time-varying electromagnetic field, the stator slots skew, the anisotropic heat conduction of the rotor core lamination and different heat dissipation conditions on the windward and lee side of the poles are considered. Furthermore, according to the different operating conditions, different rotor structures and materials, compositive calculations about the losses and temperatures of the damper bars of a 36 MW generator are carried out, and the data are compared with the test. The results show that the computation precision is satisfied and the generator design is reasonable.


Author(s):  
Almudena Vega ◽  
Roque Corral

This paper studies the unsteady aerodynamics of vibrating airfoils in the low reduced frequency regime with special emphasis on its impact on the work per cycle curves. Simulations using a frequency domain linearized Navier-Stokes solver have been carried out on rows of a low-pressure turbine airfoil section, the NACA65 section and a flat plate, to show the correlation between the actual value of the unsteady loading parameter (ULP), theoretically derived in Part IIIa, and the flutter characteristics, for different airfoils, operating conditions and mode-shapes. Both, the traveling-wave and influence coefficient formulations of the problem are used in combination to increase the understanding of the ULP influence in different aspects of the unsteady flowfield. It is concluded that, for a blade vibrating in a prescribed motion at design conditions, the ULP can quantitatively predict the effect of loading variations due to changes in the incidence, and also in the mode shape. It is also proved that the unsteady loading parameter can be used to compare the flutter characteristics of different airfoils.


SIMULATION ◽  
1964 ◽  
Vol 3 (2) ◽  
pp. 53-63 ◽  
Author(s):  
Hans F. Meissinger

A new computer technique is described which yields the partial derivatives of problem variables with re spect to pertinent system parameters simultaneously with the solution of the original system differential equations. These derivatives, known as parameter influence coefficients, are valuable to the analyst in enhancing his understanding of system characteris tics. If the problem solution x(t, λ) and the parameter influence coefficient ∂x/∂λ (t, λ) is known for a par ticular operating point where λ= λ0, then it is pos sible to make a first-order prediction of system behavior at a neighboring point having the new parameter value λ1 = λ0 + Δλ. Similar predictions can be made if not one but several parameters are to be varied. Thus, the knowledge of parameter in fluences often helps to reduce the total number of computer runs required in a parametric system study. Typical applications of the technique are: linear ex trapolation in the neighborhood of a known solution, determination of design tolerances of a system, and prediction of critical parameter values and stability boundaries. The most useful application pertains to systems disturbed by random noise where normally a very large number of computer runs would be re quired to analyze the system on a statistical basis in a variety of operating conditions. Several illustrative examples are presented in the paper.


Sign in / Sign up

Export Citation Format

Share Document