Mechanical and Forward Kinematic Analysis of Prosthetic Robot Hand for T-FLoW 3.0

Author(s):  
Yoga Bachtiar ◽  
R. Dimas Pristovani ◽  
Sanggar Dewanto ◽  
Dadet Pramadihanto
2013 ◽  
Vol 816-817 ◽  
pp. 821-824
Author(s):  
Xue Mei Niu ◽  
Guo Qin Gao ◽  
Zhi Da Bao

Kinematic analysis plays an important role in the research of parallel kinematic mechanism. This paper addresses a novel forward kinematic solution based on RBF neural network for a novel 2PRRR-PPRR redundantly actuated parallel mechanism. Simulation results illustrate the validity and feasibility of the kinematic analysis method.


2017 ◽  
Vol 116 ◽  
pp. 262-272 ◽  
Author(s):  
Anirban Nag ◽  
Santhakumar Mohan ◽  
Sandipan Bandyopadhyay

Author(s):  
Javier Dario Sanjuan De Caro ◽  
Mohammad Rahman ◽  
Ivan Rulik

Dobot is a hybrid robot that combines features from parallel and serial robots. Because of this characteristic, the robot excels for is reliability, allowing its implementation in diverse applications. Therefore, researchers have studied its kinematics to improve its capabilities. However, to the extent of our knowledge, no analysis has been reported taking into consideration the closed-loop configuration of Dobot. Thus, this article presents the complete analytical solution for the forward kinematics of Dobot, considering each link. The results are expected to be utilized in the development of a dynamical model that contemplates the dynamics of each element of the robot.


2010 ◽  
Vol 4 (4) ◽  
pp. 364-371 ◽  
Author(s):  
Nobuyuki Iwatsuki ◽  
◽  
Norifumi Nishizaka ◽  
Koichi Morikawa ◽  
Koji Kondoh ◽  
...  

This paper describes the kinematic analysis and motion control of a hyper redundant robot built by serially connecting many units with a few DOF. Each unit of the manipulator is a spatial parallel mechanism with 3 DOF and is composed of 2 stages connected with 3 linear actuators, 7 spherical joints, and a center rod. The forward kinematic analysis of the manipulator based on the forward kinematics of each unit by numerical calculation was carried out. The inverse kinematic analysis, the iterative calculation so as to converge output error while output displacement is distributed into each unit with weighting coefficient, was proposed and formulated. Motion control of the robot was theoretically and experimentally examined based on the inverse kinematics. It was confirmed that a prototype with 3 units could generate the desired trajectories.


Author(s):  
Pan Yang ◽  
Feng Gao

This paper presents kinematic analysis of a 3-degree of freedom parallel mechanism for hexapod walking-operating multifuctional robot. Each leg of the robot consists of three limbs: universal joint – prismatic joint chain (1-UP) and universal joint – prismatic joint – spherical joint chain (2-UPS) and at the end of the leg there is passive spherical joint to adjust to the uneven ground. In this paper, first the forward kinematic model is built and it shows that the model has close-form solution. Then the work space is discussed in which the robot feet trajectories can be projected. It can be shown that the current trajectories of the feet only take very small work space. After that force analysis is performed and the results show that the payload capability of the mechanism is very high. Experiments of the prototype show that the robot can walk easily with more than 150 kg loads while the step size is more than 0.5 m.


Author(s):  
Sahand Sabet ◽  
Mohammad Poursina

This paper presents the method of polynomial chaos expansion (PCE) for the forward kinematic analysis of non-deterministic multibody systems. Kinematic analysis of both open-loop and closed-loop systems are presented. The PCE provides an efficient mathematical framework to introduce uncertainty to the system. This is accomplished by compactly projecting each stochastic response output and random input onto the space of appropriate independent orthogonal polynomial basis functions. This paper presents the detailed formulation of the kinematics of constrained multibody systems at the position, velocity, and acceleration levels in the PCE scheme. This analysis is performed by projecting the governing kinematic constraint equations of the system onto the space of appropriate polynomial base functions. Furthermore, forward kinematic analysis is conducted at the position, velocity, and acceleration levels for a non-deterministic four-bar mechanism with single and multiple uncertain parameters and a SCARA robot. Also, the convergence of the PCE and Monte Carlo methods is analyzed in this paper. Time efficiency and accuracy of the intrusive PCE approach are compared with the traditionally used Monte Carlo method. The results demonstrate the drastic increase in the computation time of Monte Carlo method when analyzing complex systems with a large number of uncertain parameters while the intrusive PCE provides better accuracy with much less computational complexity.


Sign in / Sign up

Export Citation Format

Share Document